Preliminary results on antideuterons

Mariusz Sapinski, Simonetta Gentile I.N.F.N. Roma1

Outlook:

- Goals
- Event generation
- Preselection
- Acceptance
- Selection
- Results

Goals

backgrounds: $ap - O(10^6)$ $e - O(10^8)$ He- O(10^{11}) $p - O(10^{12})$ $d - O(10^2)$

- 1. find acceptance
- 2. find rejection factors for backgrounds
- estimate number of registered antideuterons in 3 years: from DM signal and spallation background
- 4. estimate the background contamination

Event generation

- generation for acceptance study: deuterons, protons and antiprotons
 (in energy points, from the box around detector)
- generation for study of cuts: deuterons, protons, antiprotons, electrons, helium

(energy spectrum flat in log(mom),0.5-10 GeV, particles generated on the plane above AMS)

Preselection

One AMSParticle with:

- track in TRK
- track in TRD
- measurement of velocity in ToF
- absolute charge = 1

d	p	e	antip
33%	29%	23%	20%

99.7% of deuteron events in our sample has only one AMSParticle

Acceptance

geometrical, ie. after preselection cuts

there are no antideuterons in GEANT, so:

We use deuterons. We assume that antimatter effects scale for antideuterons in the same way as for antiprotons, ie.

 $A(antid) = A(d) \cdot A(antip) / A(p)$

(but we do not correct cuts efficiencies) antideuterons in AMS-02

7/24

2005/07/07

Antimatter Correction

8/24

Selection

- quality cuts for β measurement,
- quality cuts for track in TRK •

follow AMS-01 analyses

- quality cuts for track in TRD
- other particle-id and final selection cuts

efficiencies with respect to preselected events

Quality cuts for β measurement (1)

number of ToF clusters

not used to β measurement < 2

n Reyco thesis (AMS-01) the cut was < 1

distance between TRK track extrapolation and measurement of the position from ToF paddle < 5.5cm

in Reyco thesis the cut was 5cm, in Giovanni's 5.5cm

antideuterons in AMS-02

Quality cuts for β measurement (2)

Velocity reconstruction based on at least 3 ToF layers: $\varepsilon_d = 95.0\%$

 χ^2 of the time fit < 5

Quality cuts for TRK measurement (1)

$$0.5 < R_{fast}/R_1 < 1.5$$
 and

$$0.0 < R_{fast}/R_2 < 2.0$$

 $\epsilon_{\rm d} = 99.8\%$

 R_1, R_2 - rigidities measured in two TRK halves

antideuterons in AMS-02

Quality cuts for TRK measurement (2)

 χ^2 of Fast Fit < 50

 $\chi^2_{no MS}$ of Fast Fit < 700

in Reyco thesis cut was on 500

$$\chi^{2} = \sum_{i} \left(\frac{x_{i}^{m} - x_{i}}{\sigma_{x_{i}}}\right)^{2} + \left(\frac{y_{i}^{m} - y_{i}}{\sigma_{y_{i}}}\right)^{2} + \left(\frac{s_{i}^{m} - x_{i}\cos\theta_{i} - y_{i}\sin\theta_{i}}{\sigma_{s_{i}}}\right)^{2}$$

MS:additional position uncertainity ~ $(\eta/\beta)_{13/24}^2$

Quality cuts for TRD measurement

no TRD clusters not used in

TRD track $\chi^2 < 1.5$

antideuterons in AMS-02

TRD electron ID

energy dposited along the track (TR and dE/dx)

 $e_{d} = 92.3\%$

compare energy from ECAL with momentum from TRK

Collinear delta rays

All these cuts are not enought to reject antip background

- we try to remove events with collinear delta rays by asking about maximally one reconstructed hit in r=2 mm around predicted track position in TRK layer. (similar cut was used in AMS-01 antihelium search)

Final cuts

- No of ACC clusters < 2 $\epsilon_d = 87.8\%$
- negative charge $\varepsilon_d = 100\%$
- mass window ε_{c}

$$\varepsilon_d = 44\%$$
 (81% of the dist.)

• mass error

$$\varepsilon_d = 37\%$$
 (85% of the dist.)

antideuterons in AMS-02

Final Acceptance

2005/07/07

antideuterons in AMS-02

19/24

Background rejection

%	d (as bck)	р	e	antip
cuts on β	79	82	75	78
cuts on TRK	82	82	82	86
cuts on TRD	87	80	15	56
cut E/p	96	97	83	87
collinear δ-rays	61	60	57	62
ACC< 2	88	91	78	83
All	32	35	4	19
+neg. charge	<2*10-3	<2*10-5	4	19
+mass window	<2*10-3	<2*10-5	0.05	1
+mass error	<2*10 -3	<2*10-5	0.008	0.3

antideuterons in AMS-02

Antideuteron background

PHYSICAL REVIEW D 71, 083013 (2005)

Flux of light antimatter nuclei near Earth, induced by cosmic rays in the Galaxy and in the atmosphere

R. Duperray,¹ B. Baret,¹ D. Maurin,² G. Boudoul,^{1,4} A. Barrau,¹ L. Derome,¹ K. Protasov,¹ and M. Buénerd^{1,7} ¹Laboratoire de Physique Subatonique et de Cosmologie, CNRSAN2P3, 53 avenue des Martyrs, 38026 Grenable-cedex, France ²Service d'Astrophysique, SAp CEA-Suclay, F-91191 Gif-sur-Yvette CEDEX, France (Reveived 18 November 2004; published 26 April 2005)

The fluxes of light antinuclei A ≤ 4 induced near Earth by cosmic ray interactions with the interstellar matter in the Galaxy and with the Earth's atmosphere are calculated in a phenomenological framework. The hadronic production cross section for antinucleons is based on a recent parametrization of a wide set of accelerator data. The production of light nuclei is calculated based on a recent parametrization of a wide set of accelerator data. The production of light nuclei is calculated based on a recent parametrization.

Example of Dark Matter signal

$$m_{1/2}$$
=450 GeV, m_0 =300 GeV, tg β =50

2005/07/07

antideuterons in AMS-02

22/24

Contamination of backgrounds

Estimation: after 3 years the amount of backgrounds which pass the cuts is at the level of $3 \cdot 10^3$ for antip and 10^2 for electrons. From MC statistics we can say that contamination of deuterons is less than 10 and protons less than 10^3 .

Better cuts are needed, ideas?

more severe cuts on β quality

more severe cuts on momentum reconstruction?

better mass estimation?

another?

Summary

- acceptance calculated, max around 2 GeV
- cuts developed, but low rejection for backgrounds
- estimation for deuterons: about 10 from spallation processes will be registered
- Dark Matter signal rather weak
- background contamination is very high
 - better rejection cuts are needed