Beam Interaction with Thin Materials

HEAT DEPOSITION, COOLING PHENOMENA AND DAMAGE LIMITS

MARIUSZ SAPINSKI CERN BE-BI

Subject is wide but the presentation is biased because author worked with highly relativistic hadron beams (protons and Pb⁸²⁺ on LHC and SPS).

The experience is based on wire scanners with carbon fibers.

no SEM wire grids, OTR screens will be discussed
only a little about scrapper foils

Contents

- Beam energy deposition
- Damage mechanisms
- Cooling processes
- Sublimation
- Secondary particles
- Radiation damage
- CERN experiments
- SLAC wire scanners
- Scrapper foils

Contents • Beam energy deposition Damage mechanisms **Cooling processes** educative Sublimation Secondary particles

Radiation damage

CERN experiments

SLAC wire scanners

Scrapper foils

BIW 12, M.Sapinski, Thin targets

April 18, 2012

Beam energy deposition

- For heavy particles: energy loss dominated by electronic dE/dx almost 100 years of theoretical development (still ongoing!)
- Can be described as a series of individual collisions.
- Collision cross section: Rutheford model free electron, Bethe-Fano model – free atom, PAI model
- for Si, C: 2-5 collisions/μm
- Thin target: large variation of dE/dx
- Ion beam: z²

Minimum Ionizing Particle: $\beta \gamma = 3-4$

Beam energy deposition

- Straggling function (Bichsel): for thin targets different than Landau
- But for 30 microns difference is already very small (~1%)
- Beam heating is volumetric effect
- Geant4 simulations

20 MeV protons on 3 μm Aluminium – various calculations

H. Bichsel and R. Saxon, Comparison of calculational methods for straggling in thin absorbers, Phys. Rev., A11:1286–1296, 1975

Beam energy deposition - electrons

- For ions the nuclear dE/dx, bremsstrahlung are small
- Ionization loss for high-energy electrons is different, because:
 - > Electrons are much smaller than heavy particles
 - They are identical to the electrons in material
- Bethe-Bloch formula for electrons valid until E<50 MeV (critical energy):

$$\frac{dE}{dx} = K \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{m_e c^2 \beta^2 \gamma \sqrt{\gamma - 1}}{\sqrt{2}I^2} + \frac{1}{2} (1 - \beta^2) - \frac{2\gamma - 1}{2\gamma^2} \ln 2 + \frac{1}{16} (\frac{\gamma - 1}{\gamma})^2 - \frac{\delta}{2} \right]$$

- The formula is different for positrons
- Above 50 MeV bremsstrahlung
- But for thin target similar result (small cross section of radiative loss, produced photon escaping target)

RF heating

- But direct beam heating is not everything
- Accelerator is like microwave owen (but don't cook on it!)
 - In LEP in 90's wire breakage has been observed WITHOUT scanning the beam
- Observation of temperature profile with CCD camera revealed temperature profiles: Light intensity
- Use of resistive wires.

beam

improved beam handling capacity of the LEP wire scanners, BIW 1996

CERN-AB-2003-067-BI

April 18, 2012

RF heating in LHC

• Temperature evolution during scan of 25% of nominal LHC beam at injection:

- Scanner tank redesigned to limit wakefield creation.
- Ferrites installed to dump RF frequencies.

Damage mechanisms

We know how the wire is heated, but why it breaks?

- Brittle failure
- Plastic failure (deformation)
- Thermo-mechanical fatigue
- Thermal shock (graphite resistant!)
- Electrical discharges (SLAC, tungsten)
- Radiation damage
- Melting/Sublimation

Momentum transfer from the beam to the wire has been estimated to be negligible, so brittle/plastic failure could be only due to acceleration during scan, and they happen after other damage mechanism weakens the wire.

Damage mechanisms

We know how the wire is heated, but why it breaks?

- Brittle failure
- **Plastic failure (deformation)**
- Thermo-mechanical fatigue
- Thermal shock (graphite resistant!) a bulk of material needed?
- Electrical discharges (SLAC, tungsten) design
- **Radiation damage**
- Melting/Sublimation

secondary

long-term - future investigations?

long-term

actual beam intensity limit?

Momentum transfer from the beam to the wire has been estimated to be negligible, so brittle/plastic failure could be only due to acceleration during scan, and they happen after other damage mechanism weakens the wire.

Phase diagram

• Will our material melt? Sublimate? Convert to jewelry?

Heat capacity

- Specific heat increases with temperature nice!
- Beryllium has 2x heat capacity, melts at 1560 K
- Tungsten has 3x heat capacity, melts at 3500 K and is good conductor!
- Quartz 4x heat capactiy, melts at 1500 K

Conclusion:

 a few materials
 to choose, specific heat
 is an important criterium

Conductive cooling

- Bulk section effect (A_d)
- Fourier law, for 1D geometry:

$$P = -\lambda(T)A_d \frac{dT}{dx}$$

- A_d is very small (thin material)
- There are material with particularly high thermal conductivity
 (e.g. nanotubes, reported up to 370 W/cm²K)

Radiative cooling

- Surface effect (A_{rad})
- Stefan-Boltzmann law:

$$\mathbf{P} = \mathbf{A}_{rad} \varepsilon \, \sigma \, (\mathbf{T^4} \text{-} \mathbf{T}_{env}^{4})$$

- thinner wire = better A/V
- Emissivity: 0<ε<1, similar plot as for heat conductivity
- carbon fiber ε=0.7-0.8
- Stefan-Boltzmann constant: $\sigma = 5.6 \ 10^{-8} \ W/m^2 K^4$
- Cooling constant:

$$\tau = \frac{m}{A\varepsilon\sigma} \int_{T/2}^{T} \frac{c(T)dT}{(T^4 - T_{env}^4)}$$

• e.g. 40 ms for T=3300 K

April 18. 2012

Thermionic emission

- Surface effect, as for radiative cooling
- Thermionic current density, Richardson-Dushman equation:

$$j_{th} = A_R T^2 \exp(-\frac{\phi}{k_B T})(1-R)$$

Nobel 1928

- A_R=120.173 [A cm⁻²K⁻²] Richardson constant
- Work function: φ
- R-reflection coefficient small for carbon fiber

$$P = A_{rad} \left(\phi + \frac{2k_B T}{q}\right) j_{th}$$

Thermionic emission

- Removed electrons are replaced current reheating
- Work function smaller, better cooling!
- Carbon: φ=4-5 eV
- External electric field decreases the work function and could improve cooling:

$$\Delta\phi = \sqrt{\frac{eE}{4\pi\varepsilon_o}}$$

Comparison of cooling processes

- Thermionic cooling the most important for high temperatures.
- Typical scan is 1 ms, total cooling time constant is about 10-15 ms, so cooling during measurement gives small contribution.

Sublimation

• Simple model, assuming a thin layer around wire where carbon vapour pressure in equilibrum with wire material. Conservative assumption – can overestimate sublimation. No re-sublimation taken into account:

$$d_{sub} = \frac{1}{2} u_{vap}(T) \rho_{vap}(T) \rho_{fiber} \Delta$$
$$u_{vap} = \frac{1}{2} \sqrt{\frac{8k_B T}{m\pi}} \quad \text{ideal gas} \text{theory}$$

W. Thieberger, *Upper limits for sublimation losses from hot carbon targets*, MUC-0186

• Other possibility:

$$\log W[\frac{g}{cm^2 s}] = 12,04 - 0.5 \log T - \frac{4 \cdot 10^4}{T}$$

S. Dushman, *Scientific foundations of vacuum technique*, 1966

Sublimation/melting is cooling as well

• For various useful materials (data often difficult to find!)

material	Melting temp [K]	heat of fusion [kJ/mole]	Vaporization temp [K]	Vaporization heat [kJ/mole]
Carbon	-	-	3915	356
Beryllium	1560	12.2	2740	297
Tungsten	3695	35.3	5828	807
Quartz	~1900	13.8	~2500	?

• Vaporization heat is much larger than fusion, but most materials first melt (even at very low pressure) and this is enough to damage.

Other effects

Typically other properties of materials must be taken into account:

- Thermal expansion low for graphite
- Mechanical strength change increase with temperature!
- Decrease of electrical resistivity

Secondary particles

- Secondary particles come from inelastic interactions (reading beam profile)
- Inelastic cross-section ~0.2-0.25 barn
- **Probability** of inelastic interaction: about 5 ·10⁻⁵
- During 1 scan of LHC beam 3[.]10¹⁴ protons: 5[.]10⁹ in about 1 ms, i.e. 5[.]10¹² Hz, for comparison luminosity 6[.]10⁸ Hz
- Number of secondaries:

$$n_s = 7.6s^{0.125} - 7.4$$

Typically 10-20/interaction

Making clear electron case

There are 3 types of electrons emitted from target!

	process	current	cooling	
Knock-on	Ionization(*)	no	Yes	5
Secondary emission	Ionization	Yes	No	
Thermionic	Temperature	Yes	Comparison of measured and sim	S ulated/calculated foil currents
(*) there is also	contribution		20	
from inelastic in	iteractions		¹⁵ SEE	thermionic
	T.Spickermann, IO	CFA-HB2004	5 0 200 400 600 Time [micro Measured Foil signal [V] Simulated/Calculated Signal [V]	800 1000 1200 1400 aseconds]

BIW 12, M.Sapinski, Thin targets

April 18, 2012

Radiation damage

- We have not really observed radiation damage
- But we used SRIM code to investigate DPA anyway
- 10⁴ scans provoke 0.004 DPA

Fig. 11. The influence of neutron irradiation on the brittle ring strength of H-451 graphite, and carbon-carbon composites UFC and RFC irradiated at 600 °C.

• This comfortable situation probably changes for OTR and scrapper foils...

Emittance growth

• Impact on the beam

$$\theta_{rms} = \frac{13.6 \, MeV}{\beta cp} \sqrt{\frac{d}{L_{rad}}} \left[1 + 0.038 \, ln \left(\frac{d}{L_{rad}} \right) \right]$$

See:

- B. Rossi, High Energy Particles, Prentice-Hall (1961)
- V.L. Highland, Nucl.Instr. And Meth. 129 (1975)
- G.R. Lynch, O.I.Dahl, Nucl.Instr. And Meth. B58 (1991)
- F. Roncarolo, "Accuracy of the Transverse Emittance Measurements of the CERN LHC", EPFL PhD Lausanne 2005

Wire scanners at CERN

• Wire origin (Lyn Evans mail, 2011) 34 microns:

I believe that the carbon fiber you are using is the one I got from Los Alamos in about 1979, with which I built the very first wire scanner.

It was given to me by a real pueblo Indian, who was a technician at the lab.

I am surprised that you have not found anything better!

• Wire broken in SPS under following conditions:

N _{ch}	σ_{l}	σ_{t}	E _{beam}	V _{wire}
	[mm]	[mm]	[GeV]	[cm/s]
2·10 ¹³	1.63	0.65	400	10

- Beam parameters uncertain.
- Damaged wire not found.

- October 23rd, 2008, SPS beam
- Special long cycle, coasting beam (reduce RF effect)
- 2 fibers broken Ebeam N_{ch} σ_{l} σ_{t} **V**wire [GeV] [cm/s][mm] [mm] 2.4[.]10¹³ 0.57 0.73 400 50 2.2[.]10¹³ 0.73 0.57 400 70

Electron microscope images. **Wire damaged by sublimation.**

- November 1st, 2010, LHC beam at 3.5 TeV
- Testing quench levels in ms timescale (for UFO losses)

N _{ch}	σ_{l}	σ_{t}	E _{beam}	v _{wire}
	[mm]	[mm]	[GeV]	[cm/s]
$1.53 \cdot 10^{13}$	0.28	0.53	3500	5

Wire scanner acquisition was not working, but we have BLM post-mortem buffer.

BIW 12, M.Sapinski, Thin targets

April 18, 2012

LHC UFOs

<10¹⁰

10⁵

1

-5 10

-10 10

-15 10

• Multiple crossings – beam forces

first UFO observed

dynamic simulation of macroparticle movement

• BTW forget about measuring emittance with a "wire" shot into the beam – forces are too strong for light object, its movement is heavily affected.

F. Zimmermann et al., CERN-ATS-2011-093 loss rate [protons/s]

0.064

10¹⁶

.06

A=10¹²

0.066

time [s]

0.068

2011 experiment - ions

- December 1st, 2011, SPS ion beam
- Fiber not detected to be broken!
- Horizontal scanner chosen (vertical beam size as for protons)

N _{ch}	σ_{l}	σ_{t}	E _{beam}	V _{wire}
	[mm]	[mm]	[ZGeV]	[cm/s]
2.6·10 ¹¹	0.8	0.6	450	2

BIW 12, M.Sapinski, Thin targets

April 18, 2012

Experiments: summary

 Quantity describing the conditions to which the wire center was exposed (charges/mm):

$$n_{ch} = rac{N_{ch}d_w}{v_{wire}t_{revol}\sigma_t}$$

No	N _{ch}	^{Vwire} [mm/s]	t _{revol}	σ _t [mm]	N _{ch} [10 ¹³ /mm]	remarks
1	2·10 ¹³	100	SPS	0.7	37.3	rot WS
2	2.4·10 ¹³	500	SPS	0.73	8.6	rot WS
3	2.2·10 ¹³	700	SPS	0.57	7.2	rot WS
4	1.5 [.] 10 ¹³	50	LHC	0.53	19.1	lin WS, not broken
5	2.6·10 ¹¹	20	SPS	0.6	2.8	ions, lin WS, not broken

SLC experience

SLAC – breakage with electron beams

FIGURE 3. Failed 15 µm diameter tungsten wire showing the rough surface resulting from many discharges.

4 micron carbon wire traces of single pulses seen damage mechanism more violent than sublimation – thermal shock?

SLAC-PUB-7832 (1998), 8th BIW

Scrapper foils

- Very interesting story of perfect material research.
- Many studies by T. Spickermann (Los Alamos PSR) and colleagues from KEK, also studied in SNS...
- PSR operational temperatures about 2000 K
- Single and double-layer HBC (Hybride Boron mixed Carbon) foils found to have the longest lifetimes.

Summary and conclusions

- Choose carefully material to your application.
- There is still room for development: new materials, enhanced cooling..
- There is still room to study the thermal phenomena- almost every aspect of the process.
- Your material can be affected by RF or HV sparking.
- Damage mechanisms can vary, often complex.
- Thin materials will remain crucial for interceptive beam diagnostics (wire scanners but OTR screens as well, as you've heard yesterday)
- Modern high-intensity systems us H⁻ accelerators in early stage stripper foils are crucial part of them.

Thank you for your attention!