

The first look on the quench test results

Mariusz Sapinski BE/BI

for all the people participating in quench tests and now in analysis

LHC Machine Committee, 2013/03/27

- 1. Beam induced quenches.
- 2. Quench tests 2013: planning and execution.
- 3. Steady-state dispersion suppressor test.
- 4. Steady-state with orbital bump test.
- 5. Influence of loss pattern.
- 6. Millisecond-timescale test.
- 7. Q6 test.

		Table 1: List of	_			
No	date	beam energy	loss duration	quenched	location	-
		[TeV]	[s]	magnet		_
1	2008.08.09	0.45	$\sim 10^{-9}$	MB	8L3	-
2	2008.09.07	0.45	$\sim 10^{-9}$	MB	10R2	
3	2009.11.20	0.45	$\sim 10^{-9}$	MB	12L6	
4	2009.12.04	0.45	$\sim 10^{-9}$	MB	15R2	
5	2010.04.18	0.45	$\sim 10^{-9}$	MB+	20R1	
6	2010.10.06	0.45	1	MQ	14R2	
7	2010.10.06	0.45	1	MQ	14R2	
8	2010.10.06	0.45	1	MB	14R2	First quench test campaign
9	2010.10.17	3.5	6	MQ	14R2	
10	2010.11.01	3.5	$10 - 40^{-3}$	MBRB (4.5 K)	5L4	
11	2011.04.17	0.45	ns	MB+	IP8	
12	2011.07.04	0.45	ns	MB	14R2	
13	2011.07.28	0.45	ns	MQXB+	IP2	
14	2013.02.15	0.45 /6 Te	eV 10^{-9}	MQM (4.5 K)	6L8	
15	2013.02.16	4.0	10^{-3}	MQ	12L6	Second quench test campaign
16	2013.02.16	4.0	20	MQ	12L6	

- 1. During 2012 in frame of Quench Test Strategy WG various scenarios of quench tests were discussed.
- 2. Five tests were finally proposed:

start

Thu

Fri

Sat

stop

duration

task

How it really was

One of the last versions of dynamic planning by Jan Uythoven

8:0	00:9:00	1:00 Dump, rampdown	
9:0	00 13:00	4:00 Proton collimation, ramp 1 (ADT set-up) - done OK	Could be as early as 04:00
13:0	00 14:00	1:00 Ramp down	ADT firmware change, if needed
14:0	00 16:00	2:00 Proton collimation, ramp 2 (500 kW) - to be repeated	Max 1 train of 144
			Installation scope for Q6 test, takes
16:0	00 17:00	1:00 Ramp down	45 min
17:0	00 19:00	2:00 Pre-cycle	
19:0	00 21:00	2:00 Proton collimation, ramp 3 (500 kW, 2-3 sec)	Max 1 train of 144
21:0	00 23:00	2:00 Ramp down, thresholds tuning, ADT firmware upgrade	
23:0	00 1:00	2:00 Proton collimation, ramp 4 (750 kW)	Max 2 trains of 144
1:0	00 2:00	1:00 Ramp down, recomputing thresholds	
2:0	00 4:00	2:00 Proton collimation, ramp 5 (1 MW)	
4:0	00 9:00	5:00 Quench recovery pre-cycle	Installation for fast losses, 2 hours ?
9:0	00 11:00	2:00 Q6 injection	BLMs changes not required
			Installation, if not done, takes 2
11:0	00 14:00	3:00 Quench recovery and pre-cycle, another ACCESS if required	hours
			BLMs modified for ADT fast losses
14:0	00 20:00	6:00 ADT fast losses (large, so can take second ramp if required)	test
20:0	00 1:00	5:00 Quench recovery and pre-cycle	
1:0	00 4:00	3:00 Orbit bump steady state, 1 ramp	BLMs modified for Orbit bump test.
4:0	00:8 00	4:00 Buffer for reality vs. optimism	
8.0	0 11.00	3.00 Buffer for limits IPO	

Photo by Jaromir Ludwin

5

Thu

Fri

Sat

start	stop		duration	task					
	8:00	9:00	1:0)0 Dump, ra	mpdown				
	9:00	13:00	4:0	0 Proton co	Illimation, ramp 1 (AD1	T set-up) - done OK			Could be as early as 04:00
	13:00	14:00	1:0	0 Ramp dov	wn				ADT firmware change, if needed
	14:00	16:00	2:0	0 Proton co	llimation, ramp 2 (500) kW) - to be repeated			Max 1 train of 144
	16:00	17:00	1:0)0 Ramp dov	wn			A	Installation scope for Q6 test, takes 45 min
	17:00	19:00	2:0	0 Pre-cycle				Ĭ	
	19:00	21:00	2:0	0 Proton co	llimation, ramp 3 (500) kW, 2-3 sec)			Max 1 train of 144
	21:00	23:00	2:0	0 Ramp do	wn, thresholds tuning,	ADT firmware upgrad	е		
	23:00	1:00	2:0	0 Proton co	llimation, ramp 4 (750) kW)			Max 2 trains of 144
	1:00	2:00	1:0	0 Ramp dov	wn, recomputing thres	holds			
	2:00	4:00	2:0	00 Proton co	llimation, ramp 5 (1 M	IW)			
	4:00	9:00	5:0	0 Quench r	ecovery pre-cycle				Installation for fast losses, 2 hours ?
	9:00	11:00	2:0	<mark>)0 Q6 injecti</mark>	on				BLMs changes not required
	11:00	14:00	3:0	0 Quench r	ecovery and pre-cycle,	another ACCESS if rec	quired	2	Installation, if not done, takes 2 hours
	14:00	20:00	6:0	0 ADT fast l	osses (large, so can tal	ke second ramp if requ	uired)	DT	BLMs modified for ADT fast losses test
	20:00	1:00	5:0	00 Quench r	ecovery and pre-cycle			_	
	1:00	4:00	3:0)0 Orbit bun	np steady state, 1 ramp	p		ADT	BLMs modified for Orbit bump test.
	4:00	8:00	4:0	00 Buffer for	reality vs. optimism			1	
	8.00	11.00	3:0	0 Buffer for	limits IPO				

Special thanks to the people who were (sometimes always) there: Daniels (Valuch and Wollman), Bernd, Wolfgang (Hofle and Bartman), Tobias, Stefano, Belen, Agnieszka, Eduardo, Barbara, Rudiger, Markus, Matteo, Mateusz, Jaromir, Arjan, OP team and many others (also supporters)!

First look on quench tests - LMC 2013.03.27

First results on proton collimation quench test

B.Salvachua, R.Bruce, S.Redaelli and D.Wollmann

Collimation Group: M.Cauchi, D.Deboy, L.Lari, D.Mirarchi, E.Quaranta and G.Valentino MP team: R.Schmidt, M.Zerlauth BLM team: E.Nebot, M.Sapinski, E.B.Holzer ADT team: W.Hofle and D.Valuch OP team: J.Wenninger, D.Jacquet Collimation WG, 25th March 2013

8

Steady-state dispersion suppressor with protons

Achieved quench limits

Thanks a lot to Eduardo for all the cross-checks!

BLM thresholds were changed during the test, the table bellow shows the measured losses in Q8 and the BLM threshold during the test

		RS09	= 1.3 s		RS10 = 5.2 s			
Ramp 3: ~1MW	BLM [Gy/]	Threshold [Gy/s]	Ratio Threshold to QL	BLM/ Thresh	BLM [Gy/]	Threshold [Gy/s]	Ratio Threshold to QL	BLM/ Thresh
BLMQI.08L7.B2I10_MQ	1.08E-02	0.035	7.5	0.3	8.42E-03	0.035	21	0.24
BLMQI.08L7.B2I20_MQ	3.81E-03	0.019	3	0.2	2.87E-03	6.90E-03	2.5	0.42

Taking now the assumed quench limit for each monitor the table bellow shows the achieved quench limit for RS over 1.3 sec and 5.2sec

		RS09 = 1.3 s		RS10 = 5.2 s			
Ramp 3: ~1MW	BLM Measurement [Gy/]	Assumed Quench Limit [Gy/s]	Ratio BLM to Quench Limit	BLM Measurement [Gy/]	Assumed Quench Limit [Gy/s]	Ratio BLM to Quench Limit	
BLMQI.08L7.B2I10_MQ	1.08E-02	4.65E-03	2.3	8.42E-03	1.67E-03	5.1	
BLMQI.08L7.B2I20_MQ	3.81E-03	6.40E-03	0.6	2.87E-03	2.29E-03	1.3	

Collimation WG - 25th March - Belen Salvachua

No quench!

Plots courtesy Agnieszka Preiebe

Why is that?

We will need FLUKA/Geant4 simulations to understand this in details

but...

CERN-LHC-Project-Note-422 (2009), MB case:

Threshold=QL*BLMsignal / Edep coil

When we smear the loss the amplitude of thinner distribution decreases faster than thicker one.

So more distributed losses lead to higher BLM signal at quench.

Steady-state with orbital bump (and ADT)

BLMGI.13L5.B2120 MQ MQ:LOSS RS09

It was a complex test, never done before:

- Inject and ramp 10 bunches (to have multiple attempts).
- Single bunch was first scraped by vertical blow to intensities < 10⁹ p (special collimators setting).
- Horizontal orbital bump was created in Q12L6.
- Bunch was excited in horizontal plane by MKQ kick and then by ADT working in sign flip mode (anti-damping).
 Scheme originally proposed by Wolfgang
- If no quench next bunch scraped less.

Several challenges:

- for damper (ultra-low sensitivity mode: 5.107 p)
- instrumentation (measurement of intensity and emittance!)

But we were prepared (4 MDs).

UFO-timescale quench test

For 2.56 ms (typical dump by UFO) signal is higher by factor 6 than expected. <u>Potential</u> increase of BLM thresholds on all cold magnets!

- 7.7 · 10⁸ lost protons
 - fraction lost when quench started
- duration: 10 ms (2-3 ms expected)

UFO: shorter than 1 ms

spiky loss structure
 UFOs are gaussian

RS	Signal (Gy/s)	S/Quech		
40 µs	10.28	2.8		
80 µs	7.61	2.3		
320 µs	2.31	1.2		
640 µs	1.99	2.1		
2.56 ms	1.46	6.1		
10.2 ms	0.73	12.0		

But we must be careful extrapolating to UFOs

Peak energy density (mJ/cm³) scaled to

- According to simulations (backed up by observations in especially equipped cell) maximum energy deposit is due to neutral particle peak.
- Ratio of BLMsignal/E_{dep} ^{coil} might be different than in our experiment.
- To make the analysis more challenging the loss pattern during quench test seems to move from turn to turn.
 - Special MAD-X simulations started to understand the time-dependent loss pattern (Vera Chetvertkova).
 - FLUKA/Geant4 simulations also necessary

Absolute peak energy density

Q6 quench test

CÉRN

LMC 2013.03.27

- Emittance from SPS: H ~0.5 μm, V ~ 0.5 μm → impact parameter 4.5 σ (full beam intercepted)
- **Pilot bunch 6-6.5e10p+** (probe beam limit increased to 1E11p+)
- Q6.L8 Current steps: 1000 A, 1500 A, 2000 A and 2500A (~ 6 TeV) → Quench!
- Fluka studies ongoing, will give us very good quench limit at 6 TeV

- 1. Quench Analysis WG has been established (April 9th first meeting).
- 2. It will bring together:
 - FLUKA/Geant4 simulations
 - MAD-X/Sixtrack simulations
 - QP3 simulations
 - detailed data analysis
 - extrapolation to 7 TeV.
- Significant dependence of BLM threshold on assumed loss scenario (possible increase of BLM thresholds in dispersion suppressor regions).
- 4. Larger than expected quench limit for UFO-timescale losses (possible increase of BLM thresholds on all cold magnets).

Extra slides

ADT loss shape

time = 1507

ADT loss shape

time = 1508

ADT loss shape

time = 1509

