

The quench limits for transient losses

Mariusz Sapinski BE/BI for many people participating in quench tests and now in the analysis

Collimation Review, 2013/05/30

- 1. Quench limits overview.
- 2. What transient losses affect collimation?
- 3. Quench limit investigations for transient losses:
 - Ultra-fast losses,
 - Millisecond-timescale losses.
- 4. Conclusions.

Energy needed to quench a magnet decreases for shorter losses so short "spikes" on collimators can potentially lead to magnet quench even if steady-state cleaning is safe.

Energy needed to quench a magnet decreases for shorter losses so short "spikes" on collimators can potentially lead to magnet quench even if steady-state cleaning is safe.

Quench limits for

transient losses

Collimation

Review

2013.05.30

- UFO losses small amplitude seen on collimators, large in UFO location.
- losses at capture are probably 'slow': they depend on the dipole ramp rate.
- losses at end of ramp are also generally slow (tails cut by closing collimators)
- losses during the squeeze were often correlated with orbit drifts and OFB.
- losses at the end of squeeze due to instabilities .

Failure losses:

failure warm separation dipoles D1

(thesis of A. Gomez Alonso, 2009)

asynchronous dump – losses on

dump protection collimators

- 1. Ultra-fast = much shorter than 1 ms.
- 2. Easy to compute:
 - see LHC-Project-Note-044 (1996):

 $\Delta H_{\rm wire} = H_{\rm wire}(T_{\rm c}) - H_{\rm wire}(1.9 {\rm K})$

- parametrization of specific heat
- implemented in ROXIE.
- 3. Several tests at injection

(CERN-LHC-Project-Note-422, 2008):

- QL from Note044: 31 mJ/cm³,
- QL from Geant4: 13-50 mJ/cm³.
- Operational quenches during Run 1: only ultra-fast at injection.
- 5. One test at "above 4 TeV".

Collimation

Review 2013.05.30

Q6 quench test

- Emittance from SPS: H ~0.5 μm, V ~ 0.5 μm → impact parameter 4.5 σ (full beam intercepted).
- **Pilot bunch 6-6.5e10p+** (probe beam limit increased to 1E11p+).
- Q6.L8 Current steps: 1000 A, 1500 A, 2000 A and 2500A (~ 6 TeV) -> Quench!
- Fluka studies ongoing, will give us very good quench limit at 6 TeV.

Quench limits difficult to compute (LHe plays crucial role, various heat transfer mechanisms).

Two tests done, both motivated by UFO losses:

- wire scanner (2010),
- fast ADT and orbit bump (2013).

BLM signal [Gy/s]

BLM signal

OPS voltage

QPS voltage [V]

- Performed on Nov. 1st, 2010.
- Beam energy 3.5 TeV.
- Intensity 1.53 · 10¹³ protons.
- Wire speed 5 cm/s.
- Quenched MBRB dipole (4.5K).
- 33 meters downstream wire scanner.
- analysis and FLUKA simulations

presented in CERN-ATS-2011-062 (IPAC11) 10³

Procedure:

- Inject and ramp 10 bunches (to have multiple attempts).
- Scrape a single bunch by vertical blow to intensities < 10⁹ p (special collimators setting).
- Create horizontal **orbit bump** (Q12L6).
- Excite single bunch in horizontal plane by MKQ kick and then by ADT using

sign flip mode (anti-damping).

If no quench – scrape less next bunch.
 Procedure proposed by Wolfgang Hofle

<u>Challenges:</u>

ext bunch. B210_MB B2122_MQ B2121_MQ B2120_MQ B2120_MQ B2132_MB B2131_MB ofle

MQ

- For damper: ultra-low sensitivity mode: 5.107 protons.
- For instrumentation: measure intensity and emittance of low-intensity bunches.
 We were prepared: 4 MDs, additional instrumentation.

B2I30 MB

dcum [m]

- Performed on February 15th, 2013.
- Quench with $7.7 \cdot 10^8$ lost protons.
- No quench with 4.10^8 lost protons.
- Loss duration: 5-10 ms:
 - 2-3 ms expected,
 - UFO: shorter than 1 ms.
- Spiky loss time-structure:
 - UFOs are gaussian.

For 2.56 ms (typical dump by UFO) signal is higher by factor 6 than expected. <u>Potential</u> increase of BLM thresholds on all cold magnets!

0.73

10.2 ms

12.0

Analysis:

- Simulate loss pattern using MadX.
- Use MadX loss pattern as input for FLUKA/Geant4 simulations.
- "Control" the FLUKA/Geant4 results comparing with measured BLM signal.
- Obtain energy deposited in the coil.
- Use FLUKA/Geant4 radial energy gradient in the coil as input to QP3.
- Compare QP3 and FLUKA/Geant4.

Plot by Vera Chetvertkova

- 1. Quench limits for transient losses investigated in 4 types of experiments:
 - A. Ultra-fast at injection
 - B. Ultra-fast at ~6 TeV
 - C. Millisecond with wire scanner
 - D. Millisecond with ADT and orbital bump
- 2. Agreement between QP3 estimations and FLUKA-based analysis in case C.
- 3. Agreement between enthalpy limit and Geant4-based analysis in case A.
- 4. Cases B and D in analysis, but:
- 5. larger than expected quench limit for UFO-timescale losses

(possible increase of BLM thresholds on all cold magnets).

Thank you for your attention

Extra slides

		Table 1: List of	_			
No	date	ate beam energy loss duration		quenched	location	-
		[TeV]	[s]	magnet		_
1	2008.08.09	0.45	$\sim 10^{-9}$	MB	8L3	-
2	2008.09.07	0.45	$\sim 10^{-9}$	MB	10R2	
3	2009.11.20	0.45	$\sim 10^{-9}$	MB	12L6	
4	2009.12.04	0.45	$\sim 10^{-9}$	MB	15R2	
5	2010.04.18	0.45	$\sim 10^{-9}$	MB+	20R1	
6	2010.10.06	0.45	1	MQ	14R2	
7	2010.10.06	0.45	1	MQ	14R2	
8	2010.10.06	0.45	1	MB	14R2	First quench test campaign
9	2010.10.17	3.5	6	MQ	14R2	
10	2010.11.01	3.5	$10 - 40^{-3}$	MBRB (4.5 K)	5L4	
11	2011.04.17	0.45	ns	MB+	IP8	
12	2011.07.04	0.45	ns	MB	14R2	
13	2011.07.28	0.45	ns	MQXB+	IP2	
14	2013.02.15	0.45 /6 Te	$V = 10^{-9}$	MQM (4.5 K)	6L8	
15	2013.02.16	4.0	10^{-3}	MQ	12L6	Second quench test campaign
16	2013.02.16	4.0	20	MQ	12L6	

First results on proton collimation quench test

B.Salvachua, R.Bruce, S.Redaelli and D.Wollmann

Collimation Group: M.Cauchi, D.Deboy, L.Lari, D.Mirarchi, E.Quaranta and G.Valentino MP team: R.Schmidt, M.Zerlauth BLM team: E.Nebot, M.Sapinski, E.B.Holzer ADT team: W.Hofle and D.Valuch OP team: J.Wenninger, D.Jacquet Collimation WG, 25th March 2013

Quench limits for transient losses

н.

Collimation review 2013.05.30

Project

Achieved quench limits

Thanks a lot to Eduardo for all the cross-checks!

BLM thresholds were changed during the test, the table bellow shows the measured losses in Q8 and the BLM threshold during the test

	RS09 = 1.3 s				RS10 = 5.2 s			
Ramp 3: ~1MW	BLM [Gy/]	Threshold [Gy/s]	Ratio Threshold to QL	BLM/ Thresh	BLM [Gy/]	Threshold [Gy/s]	Ratio Threshold to QL	BLM/ Thresh
BLMQI.08L7.B2I10_MQ	1.08E-02	0.035	7.5	0.3	8.42E-03	0.035	21	0.24
BLMQI.08L7.B2I20_MQ	3.81E-03	0.019	3	0.2	2.87E-03	6.90E-03	2.5	0.42

Taking now the assumed quench limit for each monitor the table bellow shows the achieved quench limit for RS over 1.3 sec and 5.2sec

	RS09 = 1.3 s			RS10 = 5.2 s			
Ramp 3: ~1MW	BLM Measurement [Gy/]	Assumed Quench Limit [Gy/s]	Ratio BLM to Quench Limit	BLM Measurement [Gy/]	Assumed Quench Limit [Gy/s]	Ratio BLM to Quench Limit	
BLMQI.08L7.B2I10_MQ	1.08E-02	4.65E-03	2.3	8.42E-03	1.67E-03	5.1	No
BLMQI.08L7.B2I20_MQ	3.81E-03	6.40E-03	0.6	2.87E-03	2.29E-03	1.3	l quench

Collimation WG - 25th March - Belen Salvachua

Plots courtesy Agnieszka Preiebe

Why is that?

We will need FLUKA/Geant4 simulations to understand this in details

but...

CERN-LHC-Project-Note-422 (2009), MB case:

Threshold=QL*BLMsignal / E_{dep} coil

When we smear the loss the amplitude of thinner distribution decreases faster than thicker one.

So more distributed losses lead to higher BLM signal at quench.

The loss rate obtained during this quench exercise was very flat and lasted about 20 s.

But we must be careful extrapolating to UFOs

Peak energy density (mJ/cm³) scaled to

 According to simulations (backed up by observations in especially equipped cell) maximum energy deposit is due to neutral particle peak.

- Ratio of BLMsignal/E_{dep} ^{coil} might be different than in our experiment.
- To make the analysis more challenging the loss pattern during quench test seems to move from turn to turn.
 - Special MAD-X simulations started to understand the time-dependent loss pattern (Vera Chetvertkova).
 - FLUKA/Geant4 simulations also necessary

