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Radiation Protection - Legal requirements

� SEEIIST - nuclear installation.

� Bodies issuing radiation safety

recommendations:

� International Atomic Energy

Agency (IAEA)

� International Commission on

Radiation Units and

Measurements (ICRU)

� Intern. Commission on

Radiological Protection (ICRP)

� Recommend dose to public less then

1 mSv/year (natural 2.4 mSv/year).

� IAEA document specific for

Ion Therapy Centers

(issued in 2020(!))

� Permanent presence assumed (8760 hours/year).

� There are more regulations, but this is the first one to consider.
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Radiation Protection - physics

� All Carbon ions loose energy interacting with body electrons and

producing the cancer-killing Bragg-peak.

� In addition a lot of nuclear reactions takes place, eg:

� fragmentation: 12C(p,6 Li)7Be, 12C(p,4 He)9B, etc.

� prompt gamma emission (used for in-situ imaging): 12C(p, γ)13N,
12C(p, p′γ)12C, 12C(p, 4He)6mLi→ γ +6 Li

� neutron production eg: 12C(12C,n)23Mg, 12C(p, n)12N; most

neutrons are produced in spallation eg. 12C(p, 3p3n)7Be

� No dominant processes - use of a computer code at this stage is a big

help, otherwise: tables/databases (eg. JANIS4) of nuclear reactions.

� Radiation hazard is mainly due to high-energy (HE) neutrons.

� Rule of thumb: 5 neutrons (1 high energy) produced per 12C at

430 MeV/u, moving in the beam direction (narrow cone).
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Neutron scattering and capture cross-section

(using JANIS 4.0 nuclear database)
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Neutron spectra

� General rule: neutrons must be

slowed down to thermal energies

( meV) and then they are

captured in nuclear reactions.

� So: shielding depends on

maximum neutron energy.

� Max neutron energy depends on

beam energy.

� Those reactions often produce

gammas which must be shielded

as well; for instance:
1H(n, γ)2H, Eγ = 2.2 MeV

FLUKA simulations from

arXiv:1702.08332 [physics.med-ph]

5/14



Shielding

� Concrete (various types) can slow down and absorb neutrons and shield

gamma rays → the most popular material.

� High-density poliethylene (high concentration of hydrogene) often used.

� For neutron above 100 MeV a layer of high-Z material (Fe, Pb) used, but

I don’t think it is used in therapy centers.

� Schaeffer Equation (1973, before computers era):

D = DO · exp(−ΣR · d) (+50 cm of hydrogenous material) (1)

where:

� D0,D - dose before and after shield,

� d- shield thickness,

� ΣR - neutron removal cross-section, concrete 0.0945 [cm−1],

� in addition a buildup factor R=5 due to geometry (pencil beam

source).
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Beam losses in SEEIIST
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Conservative assumption: all shots in TR2 (1 shot of 1010 Carbon ions at

430 MeV/u every 10s): 3.2 · 1016 per year! The same number of high

energy ( 300 MeV) neutrons. Lower energies neglected as they will be

stopped by the same shielding. 7/14



Dose in the Treatment Room TR2

Back-of-an-envelope calculation:

� total HE neutron number: N = 3.2 · 1016

� average elastic scattering cross section: σs = 1 barn,

� in each scattering process neutron loses half of energy (Qav = 150 MeV)

to a proton,

� tissue density: ρ = 1 g/cm3,

� atomic density of hydrogen in tissue: n = 6 · 1022cm−3,

� irradiated area: S = 20× 20 cm2,

� High-energy neutron dose: D = R ·N · n·σs·Qav
S·ρ

yearly dose (fast neutron component): 500 kGy ≈ 2500 kSv
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Radiation shielding thickness

� Initial dose from fast neutrons: 2500 kSv/year.

� We have to reduce it to 1 mSv/year (25 · 109 times).

� Result is 3.0 meters of concrete.

� Reduction to 0.1 mSv/year (as in MedAustron) - 3.3 meters
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Radiation Shielding Summary

� Basic radiation shielding requirement: 1 mSv/year dose to public.

� Back-of-an-envelope calculation confirm 3-meter concrete, compatible

with MedAustron simulations.

� This kind of calculation can be used for basic scalling, but...

� FLUKA/Geant4 simulations are necessary for assessment of real radiation

fields (IAEA fellow + expert consultant).

� Other tools: G4beamline, BDsim (MADX input), MCNP and many more.

� Input needed for estimation of shielding in TR:

� conservative but realistic operational scenarios (beam energies,

scanning area, time per patient, number of patients per year, etc),

� yearly dose to public condition (local regulations).

� 1 W/m condition (hands-on maintenance).

� Experiments’ requirements are less predictible - more shielding?
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TR1 beam lines

Since it was decided for having H and V beamlines in TR1, the

layout and optics of TR1H changed. The current layout:

Vertical part of beam line is from Marco Pullia (CNAO). It uses

slightly different magnets then SEEIIST baseline.

Dipole rendering is poor (eg. 90 deg dipole).
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TR1H optics solutions

constraint, range = patient,DX = 0.0,D′
X = 0.0, βX = 5.0, αX = 0.0, αY = 0.0, µX = 2.7;

constraint, range = mq5.1/mq3.8, βX < 60, βY < 50;

βY = 2 m βY = 27 m
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Quadrupole misalingment study

Random misalingment of all quadrupoles by up to 2 mm.

EALIGN, DX := 0.002*RANF(), DY := 0.002*RANF();

V V

Horizontal steering: by tuning the main dipoles.

First idea: only two vertical steerers. 13/14



Preliminary complete layout

To do: demonstration of position correction (probably more

steerers needed), estimation of steerers’ strength.
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