

Radiation shielding

- before touching a computer and TR1H beamline

Mariusz Sapinski*

SEEIIST-NIMMS weekly meeting, May 15, 2020

* GSI and SEEIIST

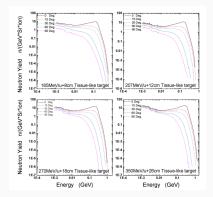
Radiation Protection - Legal requirements

- SEEIIST nuclear installation.
- Bodies issuing radiation safety recommendations:
 - International Atomic Energy Agency (IAEA)
 - International Commission on Radiation Units and Measurements (ICRU)
 - Intern. Commission on Radiological Protection (ICRP)
- Recommend dose to public less then 1 mSv/year (natural 2.4 mSv/year).

- IAEA document specific for lon Therapy Centers (issued in 2020(!))
- Permanent presence assumed (8760 hours/year).
- There are more regulations, but this is the first one to consider.

Radiation Protection - physics

- All Carbon ions loose energy interacting with body electrons and producing the cancer-killing Bragg-peak.
- In addition a lot of nuclear reactions takes place, eg:
 - fragmentation: ${}^{12}C(p, {}^{6}Li){}^{7}Be, {}^{12}C(p, {}^{4}He){}^{9}B$, etc.
 - prompt gamma emission (used for in-situ imaging): $^{12}C(p,\gamma)^{13}N$, $^{12}C(p,p'\gamma)^{12}C$, $^{12}C(p,4He)^{6m}Li \rightarrow \gamma + ^{6}Li$
 - neutron production eg: $^{12}C(^{12}C,n)^{23}Mg,\ ^{12}C(p,n)^{12}N;$ most neutrons are produced in spallation eg. $^{12}C(p,3p3n)^7Be$
- No dominant processes use of a computer code at this stage is a big help, otherwise: tables/databases (eg. JANIS4) of nuclear reactions.
- Radiation hazard is mainly due to high-energy (HE) neutrons.
- Rule of thumb: 5 neutrons (1 high energy) produced per ¹²C at 430 MeV/u, moving in the beam direction (narrow cone).


Neutron scattering and capture cross-section

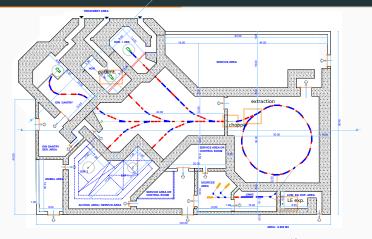
(using JANIS 4.0 nuclear database)

Neutron spectra

- General rule: neutrons must be slowed down to thermal energies (meV) and then they are captured in nuclear reactions.
- So: shielding depends on maximum neutron energy.
- Max neutron energy depends on beam energy.
- Those reactions often produce gammas which must be shielded as well; for instance: ${}^{1}H(n, \gamma){}^{2}H$, $E_{\gamma} = 2.2 \text{ MeV}$

FLUKA simulations from arXiv:1702.08332 [physics.med-ph]

Shielding


- Concrete (various types) can slow down and absorb neutrons and shield gamma rays → the most popular material.
- High-density poliethylene (high concentration of hydrogene) often used.
- For neutron above 100 MeV a layer of high-Z material (Fe, Pb) used, but I don't think it is used in therapy centers.
- Schaeffer Equation (1973, before computers era):

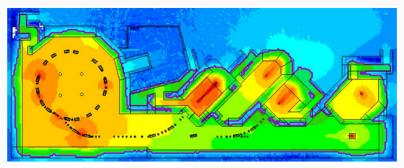
 $D = D_O \cdot exp(-\Sigma_R \cdot d)$ (+50 cm of hydrogenous material) (1)

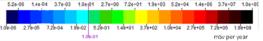
where:

- D₀, D dose before and after shield,
- d- shield thickness,
- Σ_R neutron removal cross-section, concrete 0.0945 [cm^{-1}],
- in addition a buildup factor R=5 due to geometry (pencil beam source).

Beam losses in SEEIIST

Conservative assumption: all shots in TR2 (1 shot of 10^{10} Carbon ions at 430 MeV/u every 10s): $3.2 \cdot 10^{16}$ per year! The same number of high energy (300 MeV) neutrons. Lower energies neglected as they will be stopped by the same shielding.

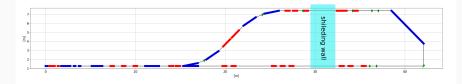

Back-of-an-envelope calculation:


- total HE neutron number: $N=3.2\cdot 10^{16}$
- average elastic scattering cross section: $\sigma_{\rm s}=-1$ barn,
- in each scattering process neutron loses half of energy ($Q_{\rm av}=150~{\rm MeV})$ to a proton,
- tissue density: $\rho=1~{\rm g/cm^3}$,
- atomic density of hydrogen in tissue: $n=6\cdot 10^{22} {\rm cm}^{-3}$,
- irradiated area: $S = 20 \times 20 \text{ cm}^2$,
- High-energy neutron dose: $D=R\cdot N\cdot \frac{n\cdot\sigma_s\cdot Q_{av}}{S\cdot\rho}$

yearly dose (fast neutron component): 500 kGy pprox 2500 kSv

Radiation shielding thickness

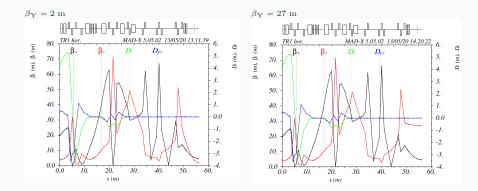
- Initial dose from fast neutrons: 2500 kSv/year.
- We have to reduce it to $1 \text{ mSv/year} (25 \cdot 10^9 \text{ times})$.
- Result is 3.0 meters of concrete.
- Reduction to 0.1 mSv/year (as in MedAustron) 3.3 meters



Radiation Shielding Summary

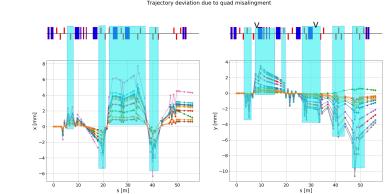
- Basic radiation shielding requirement: 1 mSv/year dose to public.
- Back-of-an-envelope calculation confirm 3-meter concrete, compatible with MedAustron simulations.
- This kind of calculation can be used for basic scalling, but...
- FLUKA/Geant4 simulations are necessary for assessment of real radiation fields (IAEA fellow + expert consultant).
- Other tools: G4beamline, BDsim (MADX input), MCNP and many more.
- Input needed for estimation of shielding in TR:
 - conservative but realistic operational scenarios (beam energies, scanning area, time per patient, number of patients per year, etc),
 - yearly dose to public condition (local regulations).
 - 1 W/m condition (hands-on maintenance).
- Experiments' requirements are less predictible more shielding?

Since it was decided for having H and V beamlines in TR1, the layout and optics of TR1H changed. The current layout:



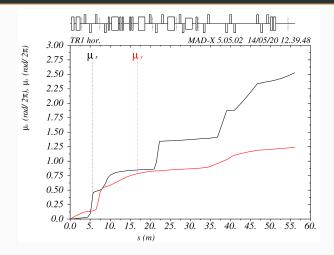
Vertical part of beam line is from Marco Pullia (CNAO). It uses slightly different magnets then SEEIIST baseline.

Dipole rendering is poor (eg. 90 deg dipole).


TR1H optics solutions

constraint, range = patient, $D_X = 0.0$, $D'_X = 0.0$, $\beta_X = 5.0$, $\alpha_X = 0.0$, $\alpha_Y = 0.0$, $\mu_X = 2.7$; constraint, range = mq5.1/mq3.8, $\beta_X < 60$, $\beta_Y < 50$;

Quadrupole misalingment study


Random misalingment of all quadrupoles by up to 2 mm. EALIGN, DX := 0.002*RANF(), DY := 0.002*RANF();

Trajectory deviation due to guad misalingment

Horizontal steering: by tuning the main dipoles. First idea: only two vertical steerers.

Preliminary complete layout

To do: demonstration of position correction (probably more steerers needed), estimation of steerers' strength.