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GSI status

1. shutdown July 2016 – May 2018:

   - new control system (LSA)

   - prepare connection of SIS18 to SIS100

   - prepare SIS18 to high-intensity run

2. beam commissioning starts in 2 weeks

https://www.gsi.de/work/beschleunigerbetrieb.htm
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Outline

 Introduction: what is Machine Learning?
 Some famous examples.
 Artificial Neural Networks.
 Theoretical background.
 Example 1: identification of quench-provoking loss 

patterns at LHC.
 Example 2: correction to measured beam profile 

distortion in Ionization Profile Monitor.
 Remark: IPM for XFEL?
 Conclusions.
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Remarks and Disclaimer

 Beam Diagnostics takes care of beam parameters 
measurements, for example: beam position, beam 
current, longitudinal and transverse profile, beam loss, 
tune, chromaticity, etc.

 Machine Learning techniques are also used in other 
aspects of accelerators, mainly control systems, 
machine tuning – not discussed here.

 Keep in mind that I am enthusiast, but not trained 
Machine Learning professional.

M. Sapinski, PSI, 2018.05.14
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What is Machine Learning?

 Algorithms which can learn and make predictions on 
data, without explicit programming.

 The term by Arthur Samuel (IBM) in 1959.
 Machine learning is closely related to computational 

statistics and to mathematical optimization.
 Data mining is a sub-field of Machine Learning known as 

unsupervised learning.
 Expert systems – are made of digitized/encoded expert 

knowledge. They are not Machine Learning algorithms. 
Still useful is there is little data available for training. 
Mixed systems are also available.

M. Sapinski, PSI, 2018.05.14
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Examples of ML-based projects (I)

                      : 
 Go is difficult for algorithms because of number of 

configurations (>2x10170,chess only ~5x1052), atoms in the 
Universe ~ 1080.

 The program uses Artificial Neural Network for learning and 
Monte Carlo Tree Search for decide about next move.

 1 year learning time, 183 MWh energy, excessive data 
sample – not the way human learns, but:
 AlphaGo won against the highest-qualified humans.
 It has exhibited creative skills making moves seldom done 

by humans.

M. Sapinski, PSI, 2018.05.14
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Examples of ML-based projects (II)

 Neural Networks are used in physics analyses since ~1988.
 They were for instance used to reject background in Higgs 

boson search – but published analysis does not use ML.
 b-tagging:

ANN

M. Sapinski, PSI, 2018.05.14
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the scope of this presentation is:

 show examples how Machine Learning techniques, 

mainly artificial neural networks (ANN), can be useful to

solve everyday problems of accelerator physicist in 

domain of beam instrumentation.
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Artificial Neural Network

Input 
Layer

Output Node 
(Perceptron)
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Perceptron parameters:
 Weights from the inputs (X) and bias (b)
     is the activation function, a step-like 

function with a threshold 
[https://www.wired.com/2016/03/took-neuroscientists
-ten-years-map-tiny-slice-brain]

b

g

 Biologically inspired → Brain cells -> neurons, computation via 
connections and thus Networks

 The basic node of ANNs is “Perceptron”

https://www.wired.com/2016/03/took-neuroscientists
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Hidden layers

Adding “hidden” layer(s) allow non-linear target functions to be represented 

Input 
Layer
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 Each hidden layer and output layer node is a perceptron
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M. Sapinski, PSI, 2018.05.14
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Multi-layer perceptron (MLP)

 Universal approximation theorem:

 Every bounded continuous “target” function can be approximated with 
arbitrarily small error, by network with single hidden layer 
[Cybenko 1989; Hornik et al. 1989]

If we have any  unknown function,                ,it can be approximated by:

oi=g(∑j=0

M

W ij(g(∑
k=0

N

x k W jk+b j))+bi)

Perceptron: No hidden 
layer

One hidden 
layer

Two hidden layers

 Carla P Gomes, Lecture Notes CS 4700: Foundations of  Artificial Intelligence

y= f (x )

M. Sapinski, PSI, 2018.05.14
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tiger

panther

Hello 
Kitty

lynx

How to design MLP topology for a given problem? 
How to find the weights? (train network) 

Multi-layer perceptron (MLP)
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From: https://www.solver.com/training-artificial-neural-network-intro

 There is no best answer to the layout of the network for any particular 
application. There are general rules:

  As the complexity between input and output increases, the number of the 
perceptrons in the hidden layer should also increase.

  If the process being modeled is separable into multiple stages, then additional 
hidden layer(s) may be required. Otherwise additional layers may simply enable 
memorization of the training set, and not a general solution effective with other 
data.

 The amount of training data sets an upper bound for the number of perceptrons 
in the hidden layer(s). 
If you use too many perceptrons the training set will be memorized. 

 ->generalization of the data will not occur, making the network useless on new 
data sets.

MLP Network design (feed-forward)

https://www.solver.com/training-artificial-neural-network-intro
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 Some algorithms known since 40’s 
(Gauss Newton or Levenberg-Marquardt).

 Backpropagation with Gradient Descent developed in 70’s 
– speeds up in ANN training – it triggered a wave of interest in ANN 
applications – still most popular.
 

MLP Network training (I)
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 How it works:
 Activation function g must be 

differentiable, eg. sigmoid or tanh.
 Initial weights chosen randomly.
 For training record (or a batch of records) a cost function (or loss or error) 

is calculated, for instance mean squared error:
 (y-desired output, o-actual output)

 The cost function gradient is calculated for each layer:

 
 New weights are calculated:
 Repeat for new record 

(but you can use the same record later again)

MLP Network training (II)

oi=g(∑j=0

M

W ij(g(∑
k=0

N

x k W jk+b j))+bi)

E=∑
i=0

L

( yi−oi ) ²

δ E
δW ij

1 =a j Err i g ' (inpi )
δ E

δW jk
2 =x k g ' ( inp j )∑

j=0

M

W ij Err i g ' ( inpi )

W ( t+1 )=W (t )+α
δ E
δW

α-learning rate

inp
i
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Conditioning inputs and initial 
weights

 Weights initialization: Generate random 
initial weights [-1,1] and divide each of 
by the square root of the number of 
units in the larger layer. 

 Inputs and targets to be normalized 
according to the used activation function
(tanh: -1..1, sigmoid: 0...1) , else some 
perceptrons will remain saturated 
(difficulty in learning).

 Rules of thumb: Start with two hidden layers with number of hidden units 
equal to (Input_num + Target_num)/2, avoid overfitting by regularization. 

 If simple MLP is not good enough for the application, look further into 
literature!

Tanh activation function
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Neural network Zoo

Source: Fjodor Van Veen, Asimov Institute, Utrecht
… 20 more
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Example 1: 
Pattern recognition in BLM signals

Beam Loss Monitors (BLMs) at LHC:
 Most high-power accelerators are equipped with BLM systems.
 LHC beam has energy of about 360 MJ per beam, equivalent to about 300 

passenger cars on a motorway.
 Uncontrolled loss of even fraction of such a beam can damage equipment 

or quench a magnet.
 Therefore about 4000 BLMs are installed around LHC, ready to dump the 

beam within ~200 μs.
 

CMSATLAS
Ionization 
chambers
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Example 1: 
LHC interaction points

ATLAS
/CMS

debris
 In order to focus the beams in the 

interaction point (experiment) 

special high-gradient quadrupoles 

are installed – called triplets.

 Beam-beam collisions produce 

interesting physics results and 

debris, which leak to triplets

 Due to that triplet magnet are 

constantly “heated” to about 30% 

of quench limit (~3 mW/cc).

 Only small variation of BLM signal 

corresponds to quench-provoking 

beam loss. What to do?

FLUKA 
simulations: 
for debris very 
good 
agreement with 
measurements!

So:

Energy inside 
magnets should 
also be well 
estimated!
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Example 1: 
How to recognize beam loss

 First idea: install BLM monitors inside the magnets, close to the coils.

 Advantage: closer to the coil – measurement corresponding better to the 

real coil heating

 Disadvantages: difficult location, small space, 

no service possible, liquid helium environment, 

high integrated dose, technical risk due to 

additional structures inside magnet etc…

 R&D and test installation done with silicon and 

diamond detectors, not very promising!

 Test Artificial Neural Network patter recognition capacity!
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Example 1: 
Some code

 Python
 Google tensorflow library with keras interface:
    >pip install tensorflow
    >pip install keras
 Create ANN:

 Prepare data: 
 Debris: 100k events with independent random variation of each BLM signal by 10%
 Loss: 100k events with independent random variation of each BLM signal by 50% MIXED 

with debris to a quench level.

 Train:                          model.fit(traindata,trainlabel,nb_epoch=70)
 Run on new data:    out_loss=model.predict(testdata)

18 inputs (BLM signals)

20 neurons

1 output: 
 Debris: 0
 Quench: 1

40
1

 tra
in

a
b

le
 p

a
ra

m
e

t e
rs

that’s it! 10 – 20 lines of code!
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Example 1: 
Pattern recognition in BLM signals

Result:

 MSE=Σ(Dexp,i - Si)
2 

To give more chances to classical signal 
we limit ourselves to 6 most sensitive 
BLMs. Otherwise it is the same data.
Overlap: about 2% of losses undetected.

Overlap: about 0.5% of quench-provoking 
losses undetected.

Compare it to standard method, for 
instance 
Mean Square Error between expected 

debris signal (Dexp) and signals at quench.

Very good 
separation

0.001

zoom
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Example 1: 
Pattern recognition in BLM signals

Lessons learned:

 It took < 1 day to perform this analysis: it is easy!

 Without further optimization the results are better than (simplistic) 

“classical” approach.

 However this solution was finally not chosen, because people do 

not like “black boxes”...
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Example 2: Correction of IPM signal 
distortion due to beam space-charge

Ionization Profile Monitor (IPM):
 Measures transverse profile of

particle beam.
 Rest gas (pressure 10-8 mbar) is 

ionized by the beam.
 Electric field is used to transport 

electrons/ions to a detector.
 If electrons are used – additional 

magnetic field is usually applied to 
confine their movement.

M. Sapinski, PSI, 2018.05.14
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Example 2:
Profile distortion in IPM

 Ideal case
 Particles are moving on straight lines 

towards the detector

 Real case
 Particle trajectories are influenced by 

initial momenta and by the interaction 
with the beam field

… instrumental effects such as camera tilt, optical point-spread-functions, point-spread functions 
due to optical system and multi-channel plate granularity etc, etc… come on top!
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Example 2:
Profile distortion in IPM

 Ideal case
 Particles are moving on straight lines 

towards the detector

 Real case
 Particle trajectories are influenced by 

initial momenta and by the interaction 
with the beam field

… instrumental effects such as camera tilt, optical point-spread-functions, point-spread functions 
due to optical system and multi-channel plate granularity etc, etc… come on top!

increase of  
gyration 
radius
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Example 2:
Profile distortion in IPM - simulation

 Focus on beam field influence.

 Electrons “feel” beam fields (E) and their movement is influenced accordingly 
resulting in possible displacements.

 This occurs for large beam fields ↔ large charge densities, large beam 
energies.

 Can be simulated with reasonable assumptions.

~20-50x more than IPM field

Virtual-
IPM 
package
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Example 2:
IPM profile corrections

 No simple analytical procedure exists.

 Using higher electric and magnetic fields (expensive, sometimes impractical). 

 Electrons + electric and magnetic fields: Sieve method (deconvolve with PSF of 
radius of Gyration) – difficult in practice.

[Dominik Vilsmeier, Bachelor Thesis, CERN]

 Electric fields only (ions): several calibration/correction attempts. 

[eg. R. E. Thern, PAC1987, J. Amundson et al., PRSTAB 6, 102801 (2003)]

Latest work: Assumption on input beam distribution (Generalized Gaussian) 
and iterative procedure for input reconstruction from distorted profile using 
the data generated from simulation tool.

[Jan Egberts, PhD Thesis, CEA Saclay]
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Example 2:
profile correction using ANN

 Actual profile
 Bunch charge

 Bunch length
 Energy

 Measured IPM profile

 Actual profile
(or sigma       )

f '

Physical 
process
(simulation)

 Measured IPM profile
    Particle number f

 Bunch length
 Energy

(ANN)

Training “grid” (375 
points):

σ x 0.29, 0.31, 0.33, 0.35, 0.37 (mm)

σ y 0.4,0.45,0.5,0.55,0.6 (mm)

N p 1.1e11, 1.25e11, 1.40e11, 1.55e11, 1.7e11

σ l 0.9, 1.05, 1.2 (ns)

σ x

Using tensorflow and 
   Matlab NN toolbox

Virtual-IPM: python package, see:
D. Vilsmeier, et al Proc. of IBIC17 , WEPCC07
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Example 2:
Results

4 validation data sets (inputs and outputs) created: 
 1% off the training grid in each dimension (within in grid)
 25% off the training grid in each dimension
 50% off the training grid in each dimension
 100% off the training grid (the next point outside the grid)

Validation “grid” (128 points) For 12 runs:
sigma systematically  
overestimated by 
0.4% with error 0.8%

Much smaller than 
measurement errors!
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Example 2:
Results

Removing the validation sample 
outside of “training” area

For 12 runs:
sigma systematically  
overestimated by 0.05% with 
error 0.7%
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IPM profie correction 
– recent developments

 4 machine learning algorithms compared: linear regression, kernel Ridge 

regression, support vector machine and multi-layer percepton 

 Surprisingly even the simplest linear regression works well in theory!

M. Sapinski, PSI, 2018.05.14
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Remark: 
New IPM detector technology

 Hybrid silicon pixel detector (in this case Timepix3)

 Relatively inexpensive

 Pixels 55x55 µm2

 Single chip 256x256 pixels

J. Storey et al., Proc. IBIC 2017(WEPCC07)
S. Levasseur et al., Proc of IPAC 2018(WEPAL075)

● Sub-ns timing
● Continous measurement
● Prototype working well on CERN PS
● No capricious MCP
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Remark: 
measuring micrometer-size beams

 If we understand the beam profile deformation, we could use it to measure 

high-brightness beams smaller than the resolution of the detector.

 Example: 5.8 GeV electron beam, 230 pC bunch charge, 21 fs bunch length, 

5-7 um transverse size.

 Even if bunch size is 1/10th

of detector resolution,

the shape of the deformed

profile strongly depends

on the bunch size!

 Alternative to

R. Tarkeshian et al.

Phys. Rev. X 8, 021039

preliminary
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Conclusions

 ML techniques become a standard tool for physicists and engineers.

 They proof to be efficient in solving non-linear multivariate problems.

 Can save lots of money: 

(CryoBLM project ~1 M€, a set of 1T magnets for IPM ~ 5M€)

 Modern tools (eg. tensorflow+keras) are very easy to use.

 Lot of physicists remain skeptical because “black box” nature of ML and 

lack of convincing way to estimate errors.

 I think that we should use it but not forget about its limitations and check 

for simpler solution.

M. Sapinski, PSI, 2018.05.14
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Further reading and playing

 “How could a Kangaroo climb Everest?” - about minimization algorithms:  

ftp://ftp.sas.com/pub/neural/kangaroos

 ANN recognizing drawings: https://quickdraw.withgoogle.com

 Music composed by AI: http://www.flow-machines.com/ai-makes-pop-music/

 Unreasonable effectiveness of ANN: 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

 E. Musk concerned about AI: https://www.youtube.com/watch?v=0NTb10Au-Ic

 AI algorithms in social media – very interesting:

https://www.ted.com/talks/zeynep_tufekci_we_re_building_a_dystopia_just_to_make_pe

ople_click_on_ads
 ANN playing with images:

 https://nerdist.com/why-are-googles-neural-networks-making-these-brain-melting-images

 … 

ftp://ftp.sas.com/pub/neural/kangaroos
https://quickdraw.withgoogle.com/
http://www.flow-machines.com/ai-makes-pop-music/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.youtube.com/watch?v=0NTb10Au-Ic
https://www.ted.com/talks/zeynep_tufekci_we_re_building_a_dystopia_just_to_make_people_click_on_ads
https://www.ted.com/talks/zeynep_tufekci_we_re_building_a_dystopia_just_to_make_people_click_on_ads
https://nerdist.com/why-are-googles-neural-networks-making-these-brain-melting-images
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Additional slides
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Space-charge on SPS beam

Space-charge effect clearly 
needed to explain this 
measurement.
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Artificial Neural Networks - Overview

 Supervised learning, unsupervised 
learning, reinforcement learning

 Batch learning, incremental learning

 Functions: Activation function, 
Target function, Objective or error 
function

 Optimization: Gradient descent, 
Levenberg-Marquardt, Epoches, 
Learning rate, Momentum

  

 Generalization: Cross validation, 
regularization, early stopping

oi=g(∑j=0

M

W ij(g(∑
k=0

N

x k W jk+b j))+bi)

Approximate target 
function

E=∑
i=0

L

( yi−oi ) ²+ λ∑
j=0

M

∑
k=0

N

(W ij ) ²

Solve optimization problem with training 
data

δ E
δW ij

=a j Err i g ' (inpi )

W ij ( t+1 )=W ij (t )+α
δ E
δ W

Calculate gradient, update 
weights

Validate with other data, “validation data” to
check the generalization or “learning”

If not, change the number of units or architecture

STOP

For more: How could a Kangaroo climb Everest?

ftp://ftp.sas.com/pub/neural/kangaroos
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The big goal: 
Artificial General Intelligence

 AGI (or “strong AI”) - mimicking (or overperforming) human 
in any intellectual task   

 Include: computer vision, natural language communication, 
etc, etc...

 Brain simulation (Blue Brain Project) versus Neuromorphic 
computing architectures (                         ) 

 Some belive/fear that AGI is next
step of evolution
(“Person of Interest”, E. Musk,
S. Hawking… etc, etc)
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Calculating backpropagation

oi=g(∑j=0

M

W ij(g(∑
k=0

N

x k W jk+b j))+bi)
E=∑

i=0

L

( yi −oi ) ²

δ E
δW ij

1 =a j Err i g ' (inpi )

-
>

=g(s)

-2(y-o) g’(s) a
1
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