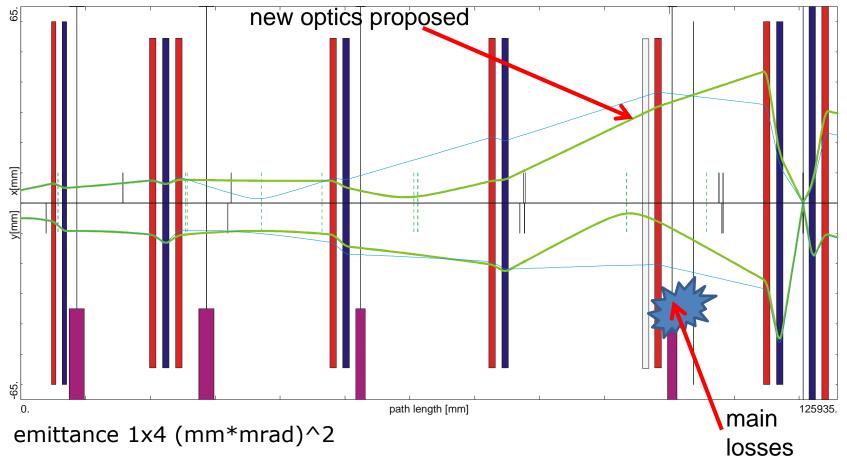


Progress on HADES beam line works

GSI Machine Meeting, March 28th, 2017

Mariusz Sapinski


Outlook

- Introduction
- Optics changes magnet test with high current
- Changes to vacuum chambers
 - TH2DKA
 - star-shaped chambers in HADQD11 and 12
 - TH3MU1 chamber?
 - aperture increase of chambers inside TH2QD21 and 22
- Beam instrumentation
 - BLM system
 - Halo Monitors
 - Transmission monitors (SEMs)
- LSA
- Documentation
- Responsibilities

improvement 2: decrease beam size in TH3MU1 (I)

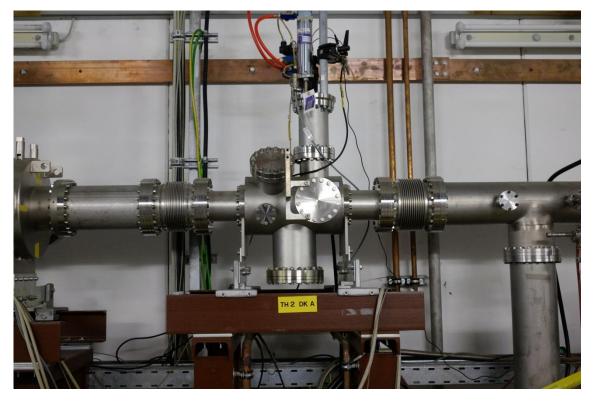
- beam spot at target ca. 0.23x0.3 (mm)^2 (radius)
- green: alternative focusing scheme, blue: 2014 focusing scheme
- where is the catch? HELMHOLTZ

S. Ratschow, MM Dec 6th, 2016

my personal ranking of the improvements

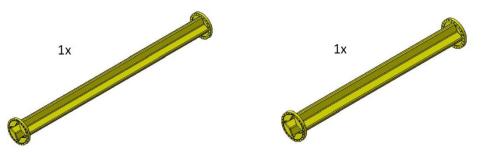
- improvement 1: new chamber for TH3MU1
 - nice to have. does not do any harm
- improvement 2: higher gradient for HADQD12
 - absolutely necessary. will solve the initial conflict between beam loss in TH3MU1 and small beam spot size at target
- improvement 3: star shaped chambers for HADQD11 and HADQD12
 - recommended. upgrades focusing system beyond current possibilities
- improvement 4: non heatable beam pipes for TH2QD2x
 - recommended. easy to build (standard round chamber)
 - could chambers of HADQD11 and HADQD12 be reused?
 - will allow to better exploit the possibilities of improvement 3
- additionally a beam diagnostics upgrade is foreseen
- WITH THESE UPGRADES IMPLEMENTED, THE BEAM LINE WILL BE IMHO WELL PREPARED FOR FUTURE HADES PION BEAM TIMES

S. Ratschow, MM Dec 6th, 2016


Optics changes – magnet test with high current

- Test done on December 5th, 2016.
- Before test magnet current was limited to 271 A (10 T/m).
- During test: table operation with current 280 A (10.33 T/m) enough for the new optics.
- Tested also with 295 A for several hours large safety margin.

Changes to vacuum chambers – TH2DKA


- Aperture limitation losses.
- BI removed the chamber.
- Larger-aperture chamber is in production.
- End of mechanical works expected mid-April.
- Similar aperture limitation is in TH2DK3, it will also be replaced.

Changes to vacuum chambers – HADQD11/12

VC-1033284-A-000_-_Sternkammer - 2x VC-1033243-P-000_-_CF-Flansch DN200

HELMHOLTZ

VC-1033245-A-000_-_Sternkammer - 2x VC-1033243-P-000_-_CF-Flansch DN200

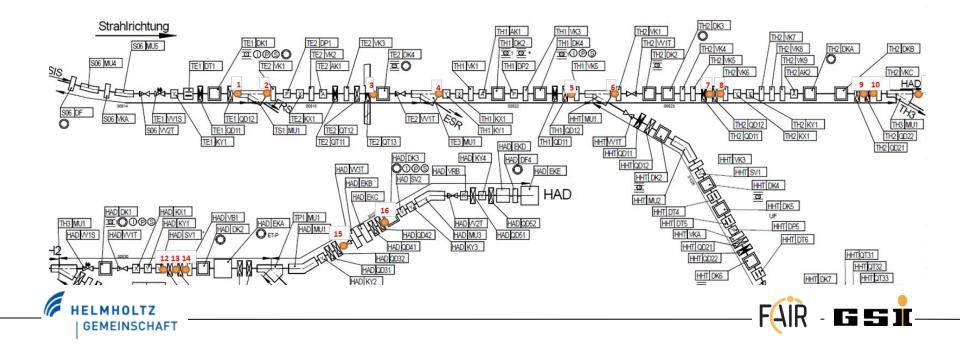
- Critical change for new optics.
- Design slowed down by thinking what to do with 5 vacuum ports and foil separating HADES and HEST vacuums.
- Design finished, approval process to be completed this week.
- Vertical and horizontal aperture increase from 60 to >90 mm.
- Expected delivery September the latest, montage to be discussed.

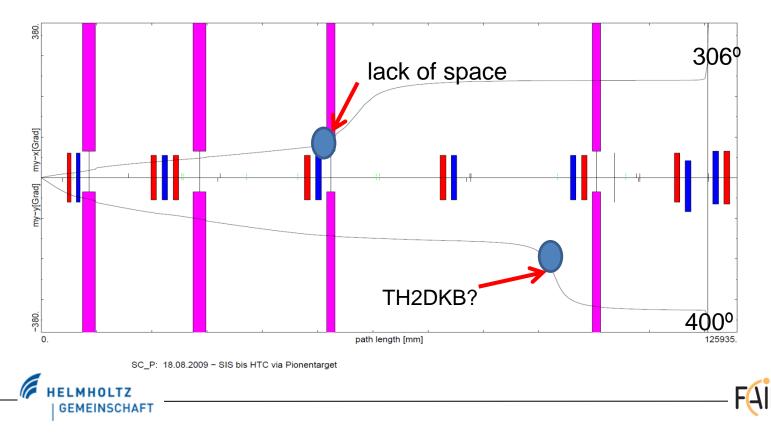
Changes to vacuum chambers – TH3MU1

0,96 Max 0,82 0,67 0,52 0,076 -0,072 -0,22 -0,37 -0,52 -0,66 -0,96 -0,96 -1,1 Min • FEM study finished.

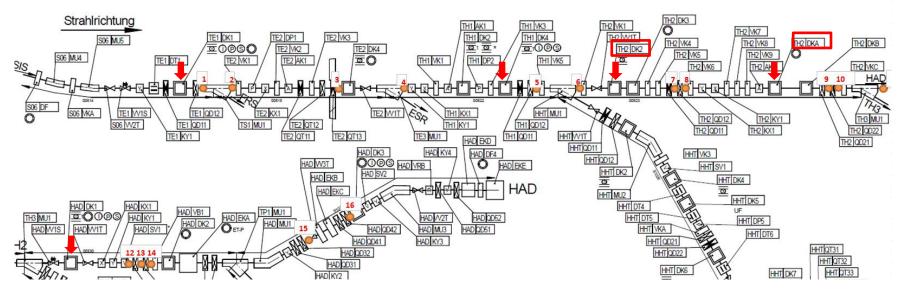
- Change not critical for new optics.
- Important if new optics does not work (but there is no reason why it should not).
- For the moment pending.

Changes to vacuum chambers – TH2QD21/22


- These chambers are never baked.
- Increase aperture by exchange to normal-diameter chambers.
- Chamber from HADQD11 can be reused.
- Second chamber found in storage.
- Installation together with new chambers in HADQD11/12.


Instrumentation-BLM system

- Locations of 16 BLMs agreed (with HADES).
- B. Walasek-Hoehne coordinating from BI side.
- FLUKA simulations to optimize positions started.
- Some electronics already acquired, final installation beginning 2018.


Instrumentation-Halo monitor

- 4 scintillators to measure beam halo/beam size move from Cave M beamline.
- Preferably to be installed with $\Delta \mu = 180^{\circ}$ wrt. target.
- Project responsible from BI: Christiane Andre.
- We have official OK from Cave-M liason.
- S. Ratschow proposed locations, evaluation still ongoing.

Instrumentationtransmission monitors

- Existing SEMs contain too much material (IC) to measure full intensity.
- Two additional SEM foils (no IC) for high-intensity beam transmission and extraction efficiency measurements. Possible issues with absolute calibration.

• We will NOT upgrade scintillating screens (it was included in the budget, but is very expensive and requires a lot of manpower.)

Control system-LSA

- Working with Bernd Schlei who is setting up the LSA hierarchy.
- His requirement provide CSV files containing twiss and magnet strength information.
- Ongoing, concerns about MIRKO twiss and sequence files.

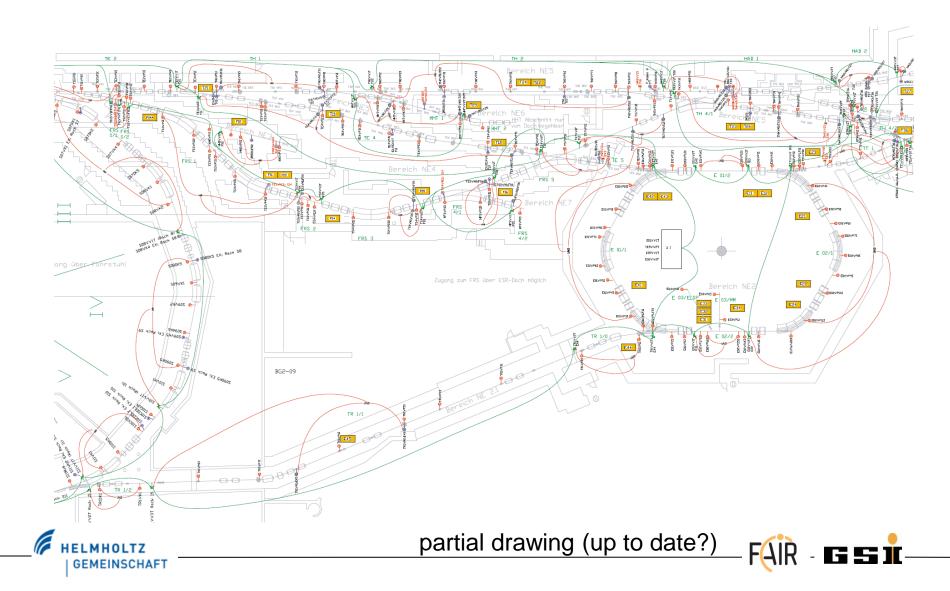
CSV File Format for OPTIC_STRENGTHS Table

OPTIC_STRENGTHS ; <optic_name></optic_name>	
DEVICE_NAME; STRENGTH_L	CSV File Format for TWISS_OUTPUTS Table
<device#1>; <knl#1></knl#1></device#1>	TWISS_OUTPUTS ; <optic_name></optic_name>
	ELEMENT_NAME;TYPE;S;BETX;ALFX;DX;DPX;MUX;BETY;ALFY;DY;DPY;MUY;X;PX;Y;PY; -
	HKICK;VKICK;K0L;K1L;K2L;K3L;K4L;K5L;K1SL;K2SL;K3SL; <opt_cols></opt_cols>
<device#n> ; <knl#n></knl#n></device#n>	<element#1> ; <> ;</element#1>
	· ·
	· ·
	<pre><element#n> ; <> ;</element#n></pre>

Documentation

- for the moment:
 - an unofficial webpage (not TYPO3) http://web-docs.gsi.de/~sapinski/HEST/
 - catalogue with all documents on windows file server
 - partly organized printed documentation
- next:
 - TYPO3 webpage
 - IPAC paper about HADES beamline upgrade
- important: synchronization of information
 - MIRKO/Oper DB/LSA/Layout (Katia model)/Component DB/reality
 - not really started yet how other machines do it? Common approach?

Responsibilities


- Define where responsibility of MK ends and those of experiment starts
 - list of experiment liason person defined
 - definition of responsibilities is often not easy,
 for instance DKs and magnets can be in experimental zones
- Proposal (based on drawing on next page):
 - SIS-18 MK responsibility end: S06VV2T last element belonging to SIS-18 (?)
 - HHD whole line under HEST MK?
 - Cave-M: HTMVV2T (?)
 - HADES: HADVV3T (?)
 - Cave C: HTCVV2TT33 (?)
 - CryRing: HTBVV2T (?)
 - comments? ideas?

- Cave A: HTAVV1T (?)
- Entrance ESR: TE5VV2T (?)
- Exit ESR: TT1V1T (?)

Responsibilities

Acknowledgements

Many thanks for help and support from Technology Laboratory, Mechanical Integration, Mechanical Design, Gross Montage, BI, Power Converters, Vacuum, Shutdown Planning, Carl, and others!

Thank you for your attention!

