Summary of mini-workshop on Cryogenic BLMs

Mariusz Sapinski and Christoph Kurfuerst

Bl seminar November 4th 2011

Cryogenic Beam Loss Monitors workshop

Tuesday, October 18, 2011 from **08:45** to **18:00** (Europe/Zurich) at **CERN (13-2-005)**

Tuesday, October 18, 2011

	Speaker: Dr. Jacques Marroncle (CEA Saclay)	
	Material: Slides 📩	
11:35 - 12:00	discussion http://indico.cern.ch/event/	CryoBLM2011
12:00 - 14:00	lunch	
14:00 - 14:25	Diamond TCT measurements down to 60 K $_{25'}$	
	Speaker: Heinz Pernegger (CERN)	
	Material: Slides 📩	
14:25 - 14:30	Cryogenics for East Hall experiments 5'	
	Speaker: Thomas Eisel (Technische Universitaet Dresden)	
	Material: Slides 🔁	
14:30 - 15:00	CryoBLM beam test - first results 30'	
-	Speaker: Christoph Kurfuerst (Technische Universitaet Wien (TU))	
	Material: Slides 🔂	
15:00 - 15:30	Physics of Semiconductor Detectors 30'	
	Speaker: Vladimir Eremin (loffe Physical Technical Institute of Pyssian Academy of Scienc)	
	Material: Slides 🗐 📆	
15:30 - 16:00	coffee	
16:00 - 16:30	CID in harsh environment 30'	
	Speaker: Jasu Haerkoenen (Helsinki Institute of Physics (FI)) 🔐	
	Material: Slides 📩	
16:30 - 16:50	Liquid Helium Scintillation 20'	
	Speaker: Thijs Wijnands (CERN)	
	Material: Slides 🖭 📩	

http://indico.cern.ch/event/CryoBLM2011

FLUKA Simulations for Assessing Thresholds of BLMs Around the LHC Triplet Magnets

A. Mereghetti¹, on behalf of the FLUKA Team M. Sapinski², on behalf of the BLM Team

 1 EN/STI/EET

 $^{2}\mathrm{BE/BI/BL}$

October 18^{th} , 2011

FLUKA Simulations

Aim

Relate the energy deposited in the superconducting coil of the *inner triplet* to the signal read by BLMs all around: **assessment of the signal thresholds**.

FLUKA simulations of the *Inner Triplet* presently installed on the right side of Point 1 of LHC (ATLAS). Considered scenarios:

For other scenarios: EDMS doc in preparation.

Fast Losses: Signals Integrated over 40 μ s

After normalisation...

... the signal due to the debris is far below the one due to lost protons!

EN/STI/EET, BE/BI/BL) FLUKA Simulations for Assessing Threshol October

After normalisation...

... the signal due to the loss can't be distinguished from the one due to the debris!

14 / 95

New Positions of BLMs

The Closer to the Coils, the Better

- higher intensity of the signal;
- signal better follows the longitudinal pattern of the peak in the coil;

FLUKA geometry: LHC Phase I Upgrade

more prone to host the new BLMs, with no important change in the physics behind.

Four Holes

- one for the heat exchanger;
- the others for not breaking the quadrupole symmetry. Good location for the new BLMs.

FLUKA Estimation

No design or location of the new BLMs (at that moment): estimation of the signal via the dose inside the yoke (blue cross).

Steady-State Losses: Final Signals

After normalisation...

... the signal due to the loss can be distinguished from the one due to the debris.

18 / 22

Requirements of the ESS BLM

EUROPEAN SPALLATION SOURCE

by Lali Tchelidze CERN, Geneva, 18 Oct. 2011

Cryogenic requirements

- A hybrid design of a cryostat is foreseen for ESS.
 - an operating loss detector might be needed at 70 K / 2 K!

 Physical size of the detector should not be very small – to cover a "large" part of the loss area.

µ-Loss for LIPAc

LIPAc: Linear IFMIF Prototype Accelerator

Cryogenic Beam Loss Monitors Workshop

CERN - 18th October 2011

Philippe Abbon, Jan Egberts, Anthony Marchix, Jacques Marroncle - DSM/Irfu/Siiev - CEA Saclay Hassen Hamrita, Michal Pomorski - DRT/List/DCSI - CEA Saclay

IFMIF^{*} : to test materials submitted to very high neutron fluxes for future Fusion Reactors.

1.125 MW \equiv ability for the Beam Dump to evacuate the whole energy of the LHC beams every 11 minutes!

LIPAc

Validation phase: prototype accelerator \rightarrow LIPAc^{*}

*Linear IFMIF Prototype Accelerator

(m)

35

Commissioning at Rokkasho

nergie afornique - energies afternatives

Superconductive Linac (scLinac)

energie atomique - energies attematives

scLinac:

T = 4K deuteron: 5 to 9 MeV (125 mA)

8 ensembles:

1 Half Wave Resonator (HWR)

1 solenoid

1 BPM

no more diagnostics

\Rightarrow sensitive detectors to tune the beam (<10⁻⁶ beam)

Note: HWR emits X-rays up to γ

Ideal µ-Loss:

sensitive only to neutrons \rightarrow to avoid fake signals

expected time response ~ second (for good tuning sensitivity)

rough space resolution

radiation hard

ability to work at cryogenic temperature

Very good reliability (once closed, cryostat will not be re-open)

Compromise: diamond

" μ -Loss Detector for IFIMIF-EVEDA", J. Marroncle et al, DIPAC 2011

Diamond: counting rates

nergie atomique - energies alternatives

Counting rate estimation for 1 W/m beam losses:

Neutron (only elastic process) all neutron spectrum $\rightarrow \sim 1200 \text{ Hz}$ $E_{neut} > 1.5 \text{ MeV} \rightarrow \sim 400 \text{Hz}$ $E_{neut} > 2.5 \text{ MeV} \rightarrow \sim 190 \text{ Hz}$

γ (all processes)

all γ spectrum $\rightarrow \sim 810$ Hz $E_{\gamma} > 1.5$ MeV $\rightarrow \sim 250$ Hz $E_{\gamma} > 2.5$ MeV $\rightarrow \sim 180$ Hz

Cryogenic Beam Loss Monitors – CERN - October 18th 2011 - JM

energie afornique - energies alternative

1,2

0,0

0,5

1,0

1,5

Cryogenic test: LHe – 4.5 K (May 2011)

Simulation ____

Experimental result

Air / LHe

1

1.5

2

0.5

0

2,0

Liquid Helium Scintillation

Candidate for detecting beam losses in the LHC ?

T. Wijnands EN/HDO

Basic principle

Scintillation mechanism

Scintillation signals

'McKinsey et al. Phys. Rev A 67 062716 (2003)'

Scintillation light - I

- Fluorescence occurs at a <u>lower</u> energy level than that required for excitation
- There is thus little self absorption of the scintillation light

Scintillation light - II

- The peak of $He_2A_1\Sigma_u^+$ emits light at approximately 80-100 nm (EUV region)
- Light at this wavelength does not propagate through a SM silica optical fibre because of Raleigh scattering (spectral dependencies as $1/\lambda^4$)

Light detection techniques

Direct detection technique

Measure extreme UV light at 100 nm with special AXUV photodiodes which have :

- 1. No surface dead region i.e. no recombination of photo generated carriers in the doped n-region or at the silicon-silicon dioxide interface
- 2. An extremely thin (3 to 7 nm) silicon dioxide junction entrance window
- 3. Silicon thickness can be optimized to maximize yield for Helium

Indirect detection technique

- 1. Wavelength shifting via coating of optical fibre to longer wavelength
 - Absorb the primary EUV light
 - Reradiate the energy at a lower wavelength
- 2. Use classical detection (PMT) technique

Direct vs. Indirect detection

Direct detection technique

- Photodiodes are very resistant to TID
- Neutron damage may deteriorate the devices rather rapidly (needs investigating)
- EUV diodes are special R&D developments (http://www.ird-inc.com/)
- Indirect detection technique
 - Wavelength shifters typically induce a loss of 10-30%
 - Reduce the overall response time of the system
 - Wavelength shifting optical fibres are generally not radiation tolerant

Feasability

- Highly efficient conversion into detectable light ?
 - Depending on detection technique of EUV light (direct/indirect)
 - Probably of the order of 10-15%
- Linear relationship E_{dep} vs. light yield ?
 - Not checked yet for exotic particles at high E in a HEP radiation field
 - Ok for X, neutrons and electron beams at 60 MeV
- Transparency for λ_{emitted} ? Ok !
- Short decay time without delay Ok !
- High optical quality & easy to manufacture ? Ok !
- Easy coupling to a light sensor ?
 - Needs further investigation, certainly not so easy

Open question : what is the purity of the He in the LHC ?