

SPS Ionization Profile Monitor - experience from 2012/2013

Mariusz Sapinski, CERN BE/BI MSWG 2013.07.02

Outlook

- Looking back renovation and expectations
- Noise problem
- Measurements on February 12th, 2013
- Magnetic field issue
- LS1 activities

Renovation

- During winter TS 2011/2012 SPS IPM was renovated:
 - MCPs exchanged (vacuum opened)
 - Electronics (surface and tunnel) exchanged to the same as in LHC
 - Optical systems and cameras exchanged to the same as in LHC
- System ready: end of May 2012,
- it supposed to work as it works on LHC!

Renovation – optical systems and cameras

Last time I spoke about it...

MSWG, September 14th, 2012:

- initially signals observed (in analog channel), but then disappeared
- suspected: camera communication problem (as in LHC)
- also one camera intensifier broken
- hope to solve during TS3
- *during TS3: faulty vertical corrector magnet exchange*
- logging to DB will be done once system functional

Signal distortion

Noise seemed to be linked to beam presence and maybe intensity, not to the magnetic cycle...

Signal distortion

- Signal with beam -
- Signal in the lab

ek				T Trig	d	M Pos: 29.	20,us	SAVE/REC
Ē	-		-	•	= :	: :	: :	Action
					= : :		: :	Save Image
E								File
	щ	سنبر	<u>.</u>	-	ت من	<u>بة سمقي</u>		Format ISTAD
E	1				Ξ			About
	19		n in	8	erre M		· · · <mark>9</mark> · · · · i	Saving
					Ξ			inages
					-			Select Folder
					Ξ			
								Save TEK0019.BM
11 1.	00V	C	12 5.0	0V	M 25.0.us		CH1 ve	Sr All

Signal distortion - remedy

• Cable shielding, moving electronics away from the beam and exchange of video signal amplifier

camera

electronics

Measurements on February 12th

- Only vertical IPM was working
- Signal seen before on LHCION, idea was to explore it
- SFTMD and LHC2 also measured!
- 40 scans with scanner 416V
- IPM was very stable, but not calibrated so the analysis is not tuned: no filtering on video, no tilt correction, etc.
- no camera gain control
- WS data: LoggingDB, IPM data: root files on VM
- Synchro WS-IPM: ±5s (my guess)

Optics functions

Q20:

	WS 416	IPM
β _v	71 m	517(V): 91 m
β_{H}	49 m	516(H): 88 m

FT:

	WS 416	IPM
β _v	64.7 m	517(V): 90.3 m
β _H	36.5 m	516(H): 24.0 m

+ BGI calibration: 0.1 mm/pixel

LHC2 at 26 GeV

WS: scan IN Emittance (WS) = 1.05 μm Beam size in IPM = 1.93 mm

LHC2 at 450 GeV

WS: scan IN Emittance (WS) = 1.13 μm Beam size in IPM: 0.46 mm

Disagreement because:

• lack proper calibration,

camera gain control, etc

• BUT there might be also

contribution from beam space charge and too weak magnetic field...

Magnetic field issue

- Electron movement in presence of beam field is complex!
- Electron velocities and space charge distorts

the profile - visible for small beams!

- increase of magnetic field cures both effects
 (0.2T→ 1T)
- simulations Marcin Patecki (ongoing):

Proceedings of IPAC13, MOPWA034

- analytical estimations Giuliano Franchetti (GSI)
- Pierre Thonet stronger magnets

Magnetic field issue

For which beam we need to increase magnetic field?

From LHC simulations- no significant effect for:

• 450 GeV beam

<u>But:</u>

- to be checked by simulations
- SPS is pulsing machine so it is easier to develop a correction procedure
- overlap of operational intensities with wire scanner

SFTMD at injection

WS: scan IN

Good agreement!

SFTMD at extraction

WS: scan IN

Good agreement!

LS1 improvements

- 1. Construction of new detectors, exactly the same as in LHC
 - Ceramic electrodes
 - Modern design
- 2. Exchange of cables (short ones), tunnel cable shielding, testing, camera communication
- 3. Change from current 2-corrector scheme to single corrector one:
 - Tested with beam in February

safe operation

- Powering scenario which assures cycling mode proposed by Gilles Le Godec
- 4. Studies ongoing to understand MCP issues
- 5. Synchronization with machine (bunch-by-bunch)

Scenario #5

Two existing converters rated 125V/125A in a serial configuration (Master/slave) with two magnets in series,

- Current reference = variable di/dt (max voltage is used, no control of the current during ramp up),
- Max requested current = 50A,
- Total Load (magnet + cables) resistance @45°C = 2.79Ω,

→ Rise time = 0.517 second

This configuration is relevant

20

Conclusions (I)

- 1. SPS IMP renovated during 2011-2012 winter TS and spring months
- 2. Long fight with noise problem stable operation in February 2013
- 3. IPM in SPS will be operational after LS1
- 4. (Because of MCP ageing it is not "switch on and forget" device)
- 5. Data from February analyzed most challenging LHC beam (ϵ =1 μ m)
 - Obviously not a very good data, calibrations/synchronization missing
- 6. For this beam there might be an issue from too weak magnetic field (but OK for other beams and also we can probably correct for it)
- 7. Improvements foreseen during LS1:
 - Reconfiguration of magnets and powering system

Conclusions (II)

- 1. PS IPM will NOT be installed during LS1
- 2. We are investigating this and electron scanner
- 3. It seems that there is a solution for magnetic field (Dominique Bodart)
- 4. Radiation is an issue, we would like to go to non-optical readout system
- 5. We think we could install a device before LS2

Acknowledgements

Many people help/contribute to this project: Ana Guerrero, Karel Cornelis, Joel Adam, Stephane Burger, Jeremie Bauche, Gilles Le Godec, Marcin Patecki, Pierre Thonet, Giovanni Iadarola

Movie (SFTMD and LHC2)

SPARE SLIDES

Negative electrode

System: magnetic field

- Magnetic field needed to keep minimize beam space charge effect
- 0.2 T magnets originally from ISR, yoke modified to extract light
- Need to exchange power converters on SPS magnets to allow cycling.
- magnets are compensated (ie. 2 magnets/detector/plane in the same circuit)
- length 43 cm
- 20 cm space between poles
- Field quality:

Aimant type IMHH

Hardware failures (other than already mentioned)

- HV ctrl card problem with compatibility with VME (linux CPU)
- 5 CID cameras stopped working, in most cases we suspect that intensifier reached MTTF (tbc by ThermoFischer).
- failures of MCPs
 - "conditioning effect" for MCPs
 - too high input electron current might kill MCP
 - abrupt HV change might kill MCP (and dump the beam!)

Killed MCP: creation a conducting channel through the plate: cannot set HV anymore, cannot amplify the signal.

Cross-calibration (WS, BSRT)

- Because of old MCPs BGI sensitivity starts where WS cannot measure
- But for ions there was an overlap
- BSRT uses cross-calibration with WS, so calibration with BSRT is of

