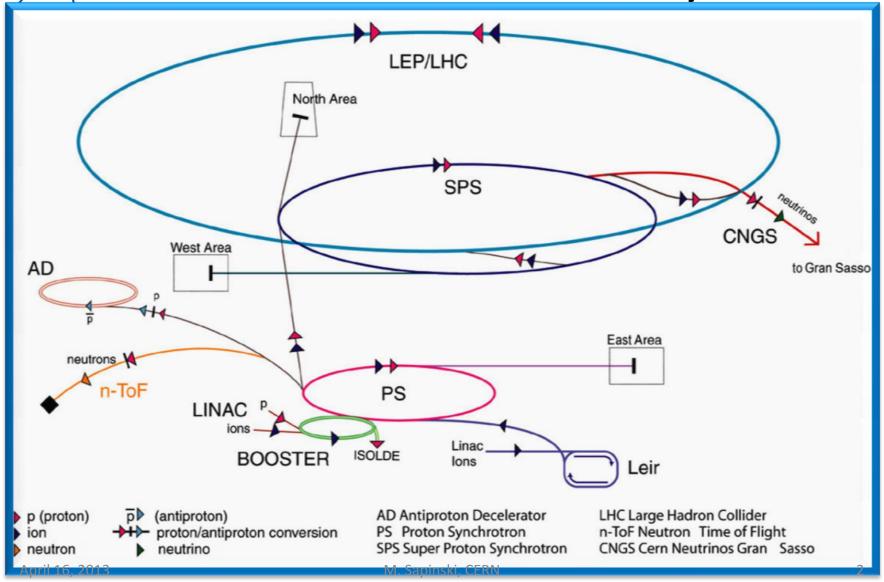


Specification for CERN-PS IPM

Mariusz Sapinski, CERN BE/BI

(after discussion with Simone Gilardoni) CERN, 2013.04.16



9th DITANET Topical Workshop on Non-Invasive Beam Size Measurement for High Brightness

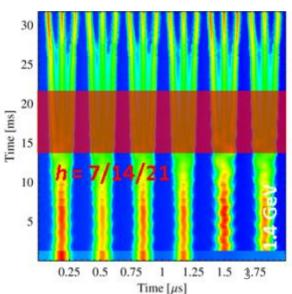
Proton and Heavy Ion Accelerators

PS in CERN accelerator system

CERN PS

• Constructed: 1959

• Circumference: 628 m


• Injection: 1.4 -2.0 GeV

• Extraction: 14-26 GeV

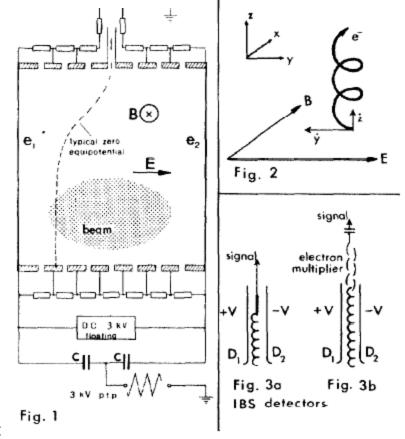
• Cycle length: 1.2-2.4 s

• Revolution period: 2.1µs

• bunch splitting:

CPS IPM A.D. 1968

THE CPS GAS-IONIZATION BRAM SCANNER


C.D. Johnson and L. Thorndahl CERN, Geneva, Switzerland

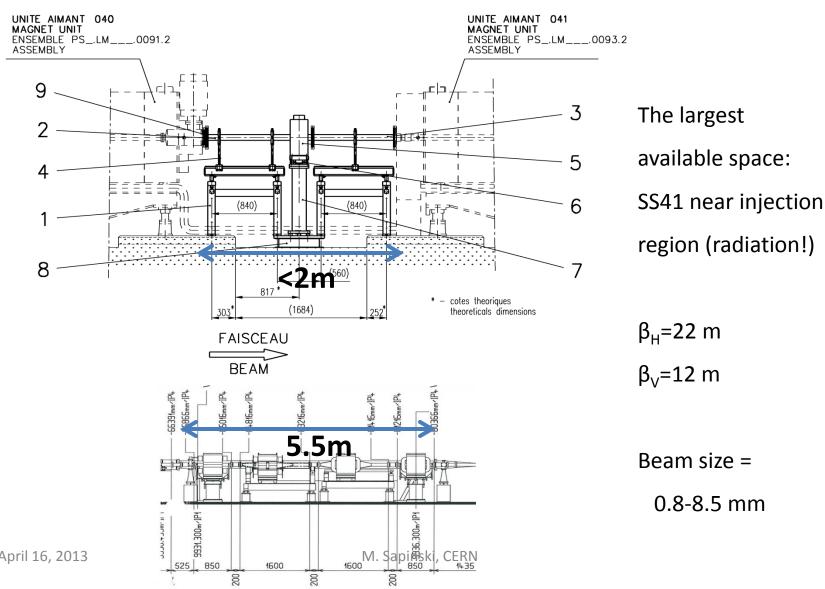
PAC 1969

Summary

A non-destructive beam scanner was installed in the CPS ring early in 1968. Deriving a signal from the electrons liberated by the proton beam from the residual gas in the vacuum chamber and using a crossed el tric and magnetic fields system of electronic ction, the scanner gives the projection to the scanner gives the projectic density distributions in the horing to the strict of the strict of the scanner gives the projectic density distributions. Spatial reconstructions are than 1 mm.

An important use of a single collector which it is strong from a slice of the beautiful to the beam and scanning is placed to the beam and scanning the region of the beam. In particular region of the beam. In particular region of the beam. In particular region of the beam and scanning the second of the beam. In particular region of the beam and scanning the second region of the beam.

April 16, 2013

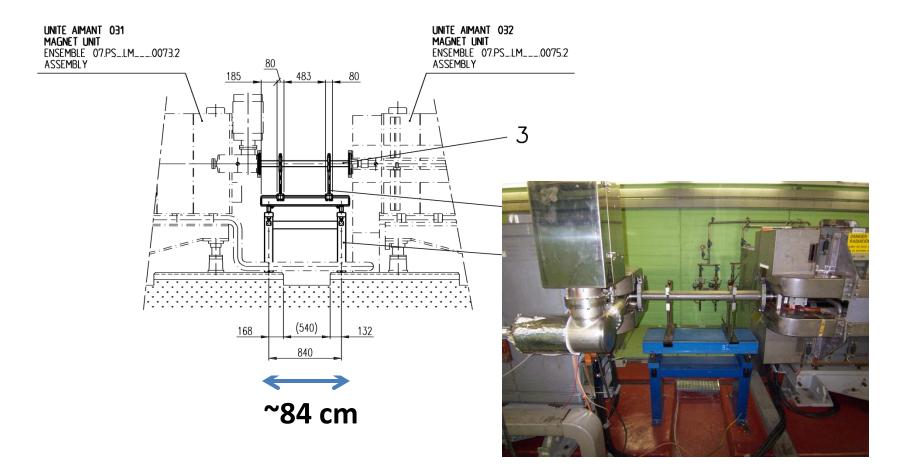


PS beams – examples from LIU

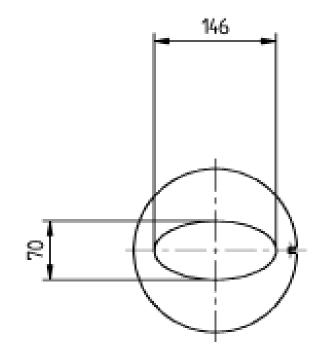
beam	SPS ftarget	TOF	EASTA	LHC 25 ns 72 bunches
Injection				
Ek [GeV]	2.0	2.0	2.0	2.0/1.4
Bunch nrb	8	1	1	6
Charges/b	3.1E12	8E12	4E11	1.5E12
Bunch len [ns]	150	190	170	180
εΗ/V [μm rad]	7.6/5.4	9.2/7.8	1.5/1.5	1.5
Extraction				
Ek [GeV]	14	20	24	26
Bunch nbr	420 (deb)	1	1	72
Charges/b	~5E10	8E12	3.8E11	1.25E11
Bunch len [ns]	5	50	debunched	4
εΗ/V [μm rad]	11/8	12/10	-	1.5

Location (1)

Location (2)



April 16


Location (3)

5 other locations: SS24, 32, 33, 62, 82

Typical vacuum chamber

First specification

- Integration time: 1 ms or better
- Acquisition frequency: 1 kHz or better
- Bunch-by-bunch (72 bunches max, not 420)
- Rest gas pressure: ~10-8 mbar
- Beam sizes: $\sigma = 0.5-10$ mm (but small ones more important)
- Emittance accuracy: 10% or better

Increasing number of bunches during the cycle might be a challenge.

What could it be...?

- Small detector, but we have more space than IFMIF.
- We could likely go for:
 - Electron collection with compact magnets.
 - Ion collection, compensating for space charge
 - **–** ...
- Multi-strip detector (silicon detector?) as the smallest beam is quite large
- MCP probably needed need to measure fast.
- No gas injection system? Or yes? Fluorescence monitor possible with new cameras?

•