

Ionization Profile Monitors (in Hadron Machines)

M. Sapinski

(m.sapinski@gsi.de) Topical Workshop on Emittance Measurements for Light Sources and FELs

ALBA

January 30, 2018

Report on recent developments in Ionization Profile
 Monitors which maybe of use for electron machines

- Introduction: noninvasive beam profile measurement (in hadron machines)
- Ionization Profile Monitors with examples
- New readout based on Hybrid Silicon Pixel detector
- Typical issues and limitations
- IPM for Light Source ALBA case study
- Correction to profile distortion using Machine Learning
- Conclusions

Noninvasive beam profile measurements (I)

- At very high energies (LHC)
 synchrotron radiation
- "Thin gas targets":
 - Beam-Induced Fluorescence monitors (BIF),
 - Wire Scanners,
 - Ionization Profile Monitors
 - Beam Gas Vertex detector (>GeV energy)
- Electron wire scanners
- Laser wire scanners (LINAC4, H-)
- Shottky

GSI

IPM concept

Ionization Profile Monitor (IPM):

- Measures transverse profile of particle beam.
- Rest gas (pressure 10⁻⁸ mbar) is ionized by the beam.
- Electric field is used to transport electrons/ions to a detector.
- If electrons are used additional magnetic field is usually applied to confine their movement.

Variations of IPMs

Technical decision	Pros	Cons
Electron collecting	speed (electrons need <5 ns to reach detector), no space- charge effect from other bunches	usually need magnets (expensive)
Detector: MCP+optical readout	theoretical resolution down to about 100 μm (difficult in practice), 2D image	cameras can do ~60 fps (slow!)
Detector: MCP+anode strip readout	fast readout (kHz)	resolution about 500 µm RF coupling to beam fields
Detectors: MCP+resistive anode	cheap readout (1 channel), resolution down to 300 μm, 2D image(!)	pileup issue (100 kHz max rate to register particles)
Detector: Channeltron(s)	simple, less sensitive to dynamic effects than MCP	resolution > 6 mm
Detector: Hybrid Silicon Pixel	resolution < 50 μ m, electron energy measurement, no MCP	need in-vacuum cooling, advanced readout electronics
Not a complete list		

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Some examples

NOTE: FIDUCIAL MARKS ARE

First IPM: F. Hornsta, Argonne, 1967

(no MCP)

F. Hornstra, Jr. and W. H. DeLuca, Proceedings of the Sixth International Conference on High Energy Accelerators p. 374 (1967).

- GSI IPMs:
 - 4 types, optical and electrical readout
- Exotic: ISIS system

MCPM

Coutesy T. Giacomini

Typical issues

>

> Electron background – electrons drifting into detector, issues often difficult

to understand (see spare slides: J-PARC, ISIS examples)

- Profile deformation due to electrons/ions interaction with bunch charges
- Dynamic effects on MCP if bunch generates lot of electrons in short time, it deplets MCP
- MCP/Phosphor response nonuniformity

Issues are usually related to small, high intensity beams.

In many machines IPMs work very reliable and provide accurate measurements.

Hybrid Pixel detector readout

- Novel readout technique here using Timepix3
- Developed to get rid of MCP
- Information: pixel position, timestamp (resolution: 1.625 ns) and energy estimation (ToT)
- > But it has another advantage: $55x55 \ \mu m^2$ pixels
- Prototype constructed, currently operated in CPS

GSI Helmholtzzentrum für Schwerionenforschung GmbH

IPM for light sources?

> Example: ALBA, emittance (H): 4.3 nm*rad, β_x = 10 m, energy= 3 GeV, dE/E=10⁻³ beam size = 288 µm

- > Vertical emittance: 0.03 nm*rad, β_y = 20 m, beam size=25 µm
- Good news:
 - 280 μm could be measured using MCP+optical readout or better using Hybrid Silicon
 Pixel readout (5 points/σ)
 - CLICpix (under development) has 25 μm
 pixel size theoretical resolution
 - $25/\sqrt{12} = 7 \ \mu\text{m}$, rel. error=0.3% (2% for 55 μm)

Plots courtesy N. Ayala

IPM for light sources – ionization yield

- Bunch charge 2x10⁹ electrons
- Cross-section: 8.3x10⁻²⁴ m²
- Gas pressure: 10⁻⁹ mbar
- Detector length: 1.4 cm (single Timepix3)
- ▶ Result: \leq 1 ionization/bunch
- Conclusions:
 - per-turn measurement possible
 - need several hundred turns to do bunch-per-bunch

Remark: H_2 threshold ionization energy is 15.4 eV.

Synchrotron radiation from your main dipoles have critical energy of

8.5 keV – make sure it does not contribute to beam profile measurement.

Digression: first IPM for electron machine

TUPC088

Proceedings of IPAC2011, San Sebastián, Spain

AN IONIZATION PROFILE MONITOR FOR THE DETERMINATION OF THE FLASH AND PITZ BEAM PARAMETER

J.Mießner*, H.-J.Grabosch, R.Sternberger, M.Markert, DESY, 15738 Zeuthen, Germany K.Tiedtke, DESY, 22603 Hamburg, Germany, A.Hofmann, KIT, 76131 Karlsruhe, Germany.

Figure 3: Recorded images of one particular photon beam; a) grid-IPM, b) box-IPM.

Figure 4: Beam at FLASH; a) 3D-profile, b) y-profile.

Soft X-ray

 $^{-1}$

-2

IPM for light sources – scenarios (I)

- $\rightarrow \beta_x = 9 \text{ m}, \beta_y = 5 \text{ m}$
- Beam sizes: σ_x =280 µm, σ_y =12 µm, σ_z =18 ps ۶
- Bunch spacing 2 ns ۶

500

400

300

200

100

Scenario 1: E=180 kV/m, B=0 T, electrons

electrons, E=180 kV/m, B=0 T

ò position [mm] see D. Vilsmeier, presentation at http://indico.gsi.de/event/IPM17 "A Modular Application for IPM Simulations", Proc. of IBIC17 (WEPCC07) (zero initial velocities)

Maybe ions work? Or we must add magnetic field!

IPM for light sources – scenarios (II)

Scenario 2:

E=180 kV/m, B=0.2 T, ions (H⁺)

lons move too slowly (200 ns to reach the detector) – they interact with several subsequent bunches

very large distortion

Scenario 3:

E=180 kV/m, B=0.2 T, electrons

Some deviation visible, gauss fit gives 285 μ m

small distortion, can be corrected?

Profile distortion in IPM - source

... instrumental effects such as camera tilt, optical point-spread-functions, point-spread functions due to optical system and multi-channel plate granularity etc, etc... come on top!

Profile distortion in IPM – simulation for LHC case

- > Distortion occurs for large beam fields \leftrightarrow large charge densities, large beam energies.
- > Can be simulated with reasonable assumptions.
- > No simple mathematical correction procedure exists (especially for case with B-field)
- > Ideas: using higher B-field, use sieve to select electrons according to gyroradius, etc...

Exercise: use Neural Network

- * tensorflow+keras: very simple to use
- non-linear multivariate problem ideal for NN
- > training and validation on simulation
- Perform is small but difficult to estimate

Conclusions

GSI

- IPMs are standard devices to measure emittance in hadron machines (synchrotrons, cyclotrons, sometimes also transfer lines and linacs).
- Recent application of Hybrid Pixel Detectors allow to improve spatial resolution by factor ~5.
- > This opens a possibility to use them in light sources like ALBA.
- Eventual measurement error due to beam space charge can be significantly reduced using Machine Learning technique.

Acknowledgments: D. Vilsmeier, A. Reiter, P. Forck, R. Singh, J. Storey, K. Sato ...