PAUL SCHERRER INSTITUT

Manon Boucard :: Master student of EPFL-LPAP :: Paul Scherrer Institute

Thermal simulations for carbon nanotube and carbon fibre as wire scanners targets

Low Density Materials for Beam Instrumentation Workshop 20/06/23 – 21/06/23

- Wire scanners are instruments used to measure transverse beam profile, using thin wire of tungsten, molybdenum or carbon fibre because of their good thermal, mechanical, and electrical properties.
- Low-density materials, such as carbon nanotube, can offer advantages.
- Focus on the thermal behavior of the wire:
 - Thermal modeling: PyTT (Python Thin Target) simulation code from A.Navarro and M.Sapinski
 - Physical model
 - Benchmarking
 - Comparison of the thermal behavior of carbon fibre (CF) and carbon nanotube (CNT) wires:
 - 2 different sets of beam parameters :
 - PSI Main ring cyclotron beam
 - HL-LHC beam

I) PyTT code

II) Wire signal benchmarking

III) Comparison of thermal simulation between carbon fibre and carbon nanotube wire scanners for PSI and HL-LHC beam parameters

- Modified version of PyTT Package from A.Navarro and M.Sapinski [1,2,3]
- Reproduce the thermal evolution of thin target detectors
- When the beam interacts with the wire, the energy deposition leads to a fast increase of the temperature but several cooling process are also taken into account.
- The thermal evolution of the wire is described by the **heat equation**:

Thermionic cooling
$$\rightarrow -S \cdot \left(\phi + \frac{2K_BT}{Q_e}\right) \cdot \frac{J_{Th}(T)}{V \cdot Cp(T) \cdot \rho \cdot Q_e}$$

- The program also allows to compute the wire signal:
 - Secondary electron emission current with Sternglass formula
 - Thermionic electron emission current with Richardson-Dushman formula

[1]: A. Navarro, Understanding Secondary Emission Processes and Beam Matter interactions for Optimization of Diagnostic Wire Grid System in Particle Accelerators, PhD Thesis, 2022

[2]: M. Sapinski, Model of Carbon Wire Heating in Accelerator Beam, CERN-AB-2008-030 BI, 2008

[3]: A. Navarro, PyTT GitHub, URL: https://github.com/navarrof/PyTT

I) PyTT code

II) Wire signal benchmarking

III) Comparison of thermal simulation between carbon fibre and carbon nanotube wire scanners for PSI and HL-LHC beam parameters

 PSI's Main Ring Cyclotron Radial Probe (RRL): wire scanner which is able to scan all the orbits along the cyclotron radius (2.5m) by measuring secondary emission current

3 wires made of carbon fibre with 2.1 g/cm3 density, 34 μm diameter and 3 cm/s speed

PSI's Main Ring Cyclotron Radial Probe (RRL)

• 3 cases are studied for wire 1 with different thermionic current:

Vertical beam size derived from tilted wires

Assuming the beam sizes as a a function of the beam current goes like [1]: $\sigma_{H,V}(I_{beam}) = aI_{beam}^{\frac{1}{3}}$ with a, a constant determined with low

current profile

- Comparison of RRL's measurements with simulations
- Benchmark of the wire signal because it is very difficult to benchmark the temperature

Benchmarking of the wire signal

More detailed study: M. Sapinski, M. Boucard, *Dealing with Thermionic Emission in Wire Scanners based on Secondary Electron Emission*, THPL150, in Proc. of International Particle Accelerator Conference (IPAC23), Venice, Italy, May 2023

Benchmarking of the wire signal

Higher thermionic current: discrepancy between simulation and measurements which can come from:

 Sensitivity to parameters like emissivity and work function for which the temperature dependency is poorly known
Other phenomena that are not taken into account by PyTT like build-up of space
charge and increase of the electron
reflection coefficient

Previous benchmarking has been done in Navarro's thesis [1](see slides in Annexes) for SEM grid but it is more speculative (what is observed could be an effect other than the thermionic current)

More detailed study:

M. Sapinski, M. Boucard, *Dealing with Thermionic Emission in Wire Scanners based on Secondary Electron Emission*, THPL150, in Proc. of International Particle Accelerator Conference (IPAC23), Venice, Italy, May 2023

[1] A. Navarro, Understanding Secondary Emission Processes and Beam Matter interactions for Optimization of Diagnostic Wire Grid System in Particle Accelerators, PhD Thesis, Universitat Politècnica De Catalunya and CERN, 2022

I) PyTT code

II) Wire signal benchmarking

III) Comparison of thermal simulation between carbon fibre and carbon nanotube wire scanners for PSI and HL-LHC beam parameters

PSI Main Ring Cyclotron and HL-LHC beams parameters

Beam	PSI turn 10	PSI turn 16		HL-LHC at beam injection
Beam energy [MeV]	105.6	123		450000
Energy loss [MeV cm ² g ⁻¹]	6.231	5.575		1.27
Beam current [mA]	1.496	1.496	5.000 (ADS intensity)	270 (25% of the nominal current)
σ_{H} [mm]	2.071	1.633	2.44	0.645
σ_V [mm]	1.583	1.402	2.09	0.645

PSI plans to reach 3.0 mA.

ADS [1]: proton accelerator \rightarrow high-intensity neutron beam by spallation \rightarrow transmutes Thorium into Uranium isotopes \rightarrow release energy

Only short-living nuclear wastes are produced

Wire parameters for thermal simulation

- Simulation parameters:
 - Wire:
 - 2 cm long
 - At PSI main ring cyclotron: 3 cm/s speed
 - At HL-LHC: 1 m/s speed
 - 34 μm diameter
 - Materials: carbon fibers or carbon nanotubes wire
 - Resolution of slices:
 - PSI: 0.25 mm
 - HL-LHC: 0.10 mm
 - Number of steps: 10000

- Crucial parameters in thermal simulations for CF and CNT:
 - Density
 - Work function
 - Emissivity
 - Specific heat

PAUL SCHERRER INSTITUT

Density and specific heat

- Density:
 - Carbon fibers: 2.1 g/cm³
 - Carbon Nanotubes:
 - 1.0 g/cm³ (experiment at CERN [1])
 - 0.2 g/cm³ (anticipated)

- Specific heat:
 - Should be the same for CF and CNT $\,$
 - Depends on the temperature
 - Values are taken from: *Thermophysical Properties of Matter - the TPRC Data Series. Volume 5. Specific Heat - Nonmetallic Solids,* Touloukian, Y. S. Buyco, E. H., 1970

[1] Alexandre Mariet, Study of the effects of copper-coating and proton irradiation at 440 GeV on the mechanical properties of carbon nanotube wires for particle beam instrumentation at CERN, PhD thesis, Université de Franche-Comté and femto-st, Besançon, May 2023

Emissivity and work function

- Emissivity
 - Similar for CF and CNT: around 1
 - Surface of CNT not really **smooth** \rightarrow can lower the emissivity
 - Lower emissivity \rightarrow lower radiative cooling

- Work function
 - Similar for CF and CNT: around **5** eV
 - The lack of smoothness of the surface can lower the work function of the CNT
 - Lower work function \rightarrow stronger thermionic current
 - Literature suggests that the work function decreases with the **temperature** $[1,2] \rightarrow$ stronger thermionic cooling for high temperature

With and without cooling thermal behaviour

PSI

HL-LHC

The heating is really fast, maximum temperature depends on heat capacity and **not** density: $\left(\frac{\partial T}{\partial t}\right)_{Tot} = \frac{\Phi(x,y,t)}{Cp(T)} \cdot \frac{dE}{dx}$ [MeV cm² g⁻¹]

... but wires are really small objects \rightarrow cooling is really fast

Temperature rises are the same for CF and CNT but the cooling is faster for CF because of the smaller amount of material

Less materials \rightarrow cool faster (like when you take a spoonful of hot tea in a cup to cool it down more quickly)

PSI and HL-LHC wire signal

HL-LHC

Huge thermionic peak for HL-LHC beam \rightarrow unexploitable measurements \rightarrow reasons why the SE current is not used for high-energy beams. Other phenomena like space charge can occur and are not considered by PyTT.

PyTT is a tool for estimating the thermal behavior of thin targets

- Benchmarking using secondary and thermionic emission is positive
- Discrepancy observed for high thermionic current probably due to space charge from generated electrons
- Simulations show high sensitivity on materials parameters:
 - Temperature dependence of work function and emissivity

Due to low-density materials, the cooling processes are faster → temperatures reached by CNT wires are lower than those reached by CF wires
Complete suppression of thermionic emission current for PSI beams

Annexes: Previous benchmarking [1]

PAUL SCHERRER INSTITUT

^[1] A. Navarro, Understanding Secondary Emission Processes and Beam Matter interactions for Optimization of Diagnostic Wire Grid System in particle Accelerators, PhD Thesis, Universitat Politècnica De Catalunya and CERN, 2022

Annexes: Simulation uncertainities

PSI main ring cyclotron beam, 105.6 Mev beam energy, 1496 μA beam current. Initial work function : 5 eV Initial emissivity : 1

For emissivity and work function, relative errors are **bigger for intensity than for temperature**

The simulated intensity is highsensitive to emissivity and work function change, especially for work function for which the relative error **grows exponentially** (due to the exponential term of thermionic current).

Annexes: RRL measurements uncertainties

Annexes: Influence of the material surface on work function

Ductile damage of a Molybdenum wire due to multiple scans [1]

Passages through the beam **damage the wire**, the smoothness of the wire decreases \rightarrow increase of the **thermionic emission** \rightarrow explained by a decrease in the **work function**.

[1] M.Sapinski, About the Damage Mechanisms of Thin Targets Exposed to High-power Particles Beams, THPL151, in Proc. of International Particle Accelerator Conference (IPAC23), Venice, Italy, May 2023

Annexes: The heat equation

 $\left(\frac{\partial T}{\partial t}\right)_{Tot} = \frac{\Phi(x,y,t)}{Cp(T)} \cdot \frac{dE}{dx} - \frac{S \cdot \sigma_{SB} \cdot \epsilon(T) \cdot \left(T^4 - T_0^4\right)}{V \cdot Cp(T) \cdot \rho} - \frac{k(T)}{Cp(T) \cdot \rho} \left(\frac{\partial^2 T}{\partial^2 x} + \frac{\partial^2 T}{\partial^2 y}\right) - S \cdot \left(\phi + 2K_B T\right) \cdot \frac{J_{Th}(T)}{V \cdot Cp(T) \cdot \rho \cdot Q_e}$

With:

 $\Phi(x, y, t)$ [cm⁻² s⁻¹] the flux of particles

Cp(T) [J K⁻¹ g ⁻¹] the specific heat

 $\frac{dE}{dx}$ [MeV cm² g⁻¹] the energy loss

S the radiative surface

 σ_{SB} = 5.67*10⁻⁸ W m⁻² K⁻⁴ The stefan-Boltzmann constant

 $\epsilon(T)$ [-] the emissivity

 T_0 [K] the initial temperature

V volume of the wire slice

 ρ [g cm⁻³] the material density

k(T) [W m⁻¹ K⁻¹] the conductivity

 ϕ [eV] the work function

 $K_B = 1.380649 * 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$ the Boltzmann constant

 $J_{Th}(T)$ [A] the thermionic current

 $Q_e = 1.602 \times 10^{-19}$ C the elementary charge