Ionization Profile Monitor Simulations Status and Future Plans

M. Sapinski, P. Forck, T. Giacomini, R. Singh, S. Udrea, D. M. Vilsmeier (GSI, Darmstadt), B. Dehning, J. Storey (CERN, Geneva), F. Belloni, J. Marroncle (CEA/IRFU, Gif-sur-Yvette), C. Thomas (ESS, Lund), R. M. Thurman-Keup (Fermilab, Illinois), K. Satou (J-PARC, KEK), C. Wilcox, R. Williamson (STFC/RAL/ISIS)

Abstract

Nonuniformities of the extraction fields, the velocity distribution of electrons from ionization processes and strong bunch fields are just a few of the effects affecting lonization Profile Monitor measurements and operation. Careful analysis of these phenomena require specialized simulation programs. A handful of such codes have been written independently by various researchers over the recent years, showing an important demand for this type of study. In this paper we describe the available codes and discuss various approaches to Ionization Profile Monitor simulations. We propose benchmark conditions to compare these codes among each other and we collect data from various devices to benchmark codes against the measurements. Finally we present a community effort with a goal to discuss the codes, exchange simulation results and to develop and maintain a new, common codebase.

Common tools

XML data format

• XML based format for storing data related to transverse beam profile measurements

 Stores a number of profiles or images along with important meta data

• The goal is to facilitate comparison and processing of data among the different parties

	</th <th>xml version="1.0" encoding="UTF-8"?></th>	xml version="1.0" encoding="UTF-8"?>					
	 	leasurement>					
▼ <meta/>							
		<date>2016-06-22</date>					
1		<contact></contact>					
		<pre><name>Dominik Vilsmeier</name></pre>					
		<email>d.vilsmeier@gsi.de</email>					
		<comment>This is a comment about the measurement.</comment>					
		<device></device>					
		<id>pyECLOUD</id>					
		<type></type>					
		<ipm></ipm>					
		<extractionvoltage unit="kV">2000</extractionvoltage> <magneticfieldstrength unit="T">0</magneticfieldstrength> <electrodedistance unit="mm">87.5</electrodedistance> <mode>electrons</mode>					
		<gas></gas>					
		<composition>Hydrogen</composition>					
		<pressure unit="mbar">50</pressure>					
		<pre><acquisitionsystem>MCP + Detector</acquisitionsystem></pre>					
		<comment>Comment about IPM</comment>					
	~	<beam></beam>					
		<particletype>protons</particletype>					

Known simulation codes

Name/Lab	Language	Ionization	Guiding field	shape	Beam field	Tracking
GSI code	C++	simple DDCS	uniform E,B	parabolic 3D	3D analytic relativ.	numeric R-K 4 th order
PyECLOUD-BGI /CERN	python	realistic DDCS	uniform E,B	Gauss 3D	2D analytic relativ. only	analytic
FNAL	MATLAB	simple SDCS	3D map E,B	arbitrary	3D numeric relativ. (E and B)	num. MATLAB rel. eq. of motion
ISIS	C++	at rest	CST map E only	arbitrary (CST)	2D numeric (CST) non-relativ.	numeric Euler 2 nd order
IFMIF	C++	at rest	Lorenz-3E map E only	General. Gauss	numeric (Lorenz-3E) non-relativ.	
ESS	MATLAB	at rest	uniform E,B	Gauss 3D	3D numeric (MATLAB) relativ.	numeric MATLAB R-K
IPMSim3D /J-PARC	python	realistic DDCS	2D/3Dmap E, B	Gauss 3D	2D numeric (SOR) relativ. only	numeric R-K 4 th order

Data analysis GUI

A software - written in
 Python - has been developed
 for visualizing and
 processing data that uses
 the above mentioned format

• The software works with images and profiles and can perform common tasks such as normalizing, centering or fitting profiles

Fig.: Excerpt from an example data file using the XML format.

Fig.: Screenshot from the Data Analysis GUI.

Summarization of the known codes within the collaboration. Only PyECLOUD-BGI and IPMSim3D are public so far, however GSI code and ESS code are planned to be released as well.

 PyECLOUD-BGI is the only code using an analytic solution for the equations of motion (for the special case of no longitudinal electric field component and only one magnetic field component) • IPMSim3D is the only code that uses a self-built solver for the beam fields

• FNAL code is the only one using relativistic equations of motion

<u>Conclusions</u>

• The goals are to exchange information between researchers working in different laboratories and share experience in designing and understanding these devices. • Currently a few of the described codes are still under independent development, however a common effort to develop a universal, modular multi-purpose approach is also ongoing.