

Investigating Beam-Induced Electron Emission from Thin Wires in Proton Beams and Bias Voltage Influence

End of Internship Presentation

Touguet Jerome PSI, 16 December 2024

Presentation Outline

- Wire scanner overview
- Emission processes
- Previous results and analyses
- Recapture of low energy electron in presence of bias voltage
- Beam impact on the recapture
- Recapture of thermionic emission

Transverse Beam profile

- Information for efficient acceleration and particle delivery
- Obtain transverse beam intensity distribution
- Shape not always gaussian
- Scintillator screen, wire scanner, optical imaging system, Multi-Wire Proportional Chamber, IPM, SEM grids,...
- Wire scanner considered the most precise device

PSI

Wire scanner in brief

- Transverse beam profile by moving a thin wire through the beam and interact with it
- Electrons escape the wire resulting in current
- Moving support rotational or linear
- Wire Thickness< 100 μm
- Wire material: tungsten, carbon fiber, Molybdenum..

Broken Molybdenum wire with 25 μm of diameter

PSI

HIPA's main ring

HIPA's main ring properties:

- Energy:72-590MeV
- Number of turns:186
- Beam Intensity: few µA-2.2mA
- Longitudinal size: σ=0.2ns/every 20 ns (50MHz)

Wire scanner in both planes in UCN

- Energy:590 MeV
- Beam intensity: 2mA for 8 seconds every 5 minutes
- Flat beam

- Horizontal wire: Carbon nanotube wire
- Vertical wire: Molybdenum wire
- Motor speed:60 mm/s
- Similar wire scanner in SINQ: 2 Molybdenum wires

Long Radial Probe(RRL)

RRL properties:

- Radial probe in the main ring
- 3 wires: 2 titled (±45°)/ 1 vertical
- Carbon fiber wires (diameter: 33 µm)
- Motor speed:29.7 mm/s

Long Radial Probe(RRL)

Delta emission

- Binary interaction: Electrons scattered by proton/ion and escaping matter with low interaction and scattering (Tertiary electron)
- Describe as statistical process using Monte-Carlo simulation(proportional to beam intensity)
- High energy electrons: Avg energy of 92keV for RRL wire at 590MeV
- Decrease the energy deposited on the wire: Bethe-Bloch modified
- Impact in the signal is normally negligeable for wire scanner

Low energy secondary emission

- Collective interaction
- 3 step process: Generation(ionization), Diffusion, Emission on the barrier
- Secondary emission yeld (SEY) described on Sternglass Formula :

$$SEY = 0,01. L_S \frac{dE}{dx} \bigg|_{el} \left(1 + \frac{1}{1 + \frac{5,4.10^{-6}E}{A_p}} \right)$$

SEY values at 590 MeV: CF:1.14% Mo:4.19%

 Low energy electrons: <100 eV, avg energy 4-5eV

Thermionic emission

• Richardson-Dushman equation:

 $J_{th} = A_R \cdot T^2 \cdot \exp\left(-\frac{\Phi}{k_B \cdot T}\right)$

• Cooling process for high temperature

$$\left(\frac{\partial T}{\partial t}\right)_{TC} = S.(\phi + \frac{2k_BT}{Q_e}) \cdot \frac{J_{Th}(T)}{\rho \cdot C_p(T) \cdot V}.$$

Thermionic emission: Disturbance

Energy distribution:

PSI

Emission processes in presence of biased wire

 $Signal = N_{sec,escaped} - N_{sec,recaptured} + N_{th,escaped} - N_{th,recaptured} + N_{\delta,escaped}$

Previous results from Manon Boucard*

Remaining signal with increase of bias voltage

Thermionic emission seems to be not suppressed

*Dealing with thermionic emission in wire scanners based on secondary electron emission, DOI:10.18429/JACoW-IPAC2023-THPL150

Experimental techniques

- Log IV:
- 2kHz measurement
- Apply battery as bias voltage
- -Logarithmic current amplifier
- Reading on Meson system

- Keithley 2400 source-meter:
- 10Hz measurement
- Voltage source and current meter
- Programmable using Labview scripts

- Libera 4-channel current meter:
- 1kHz measurement
- Apply variable bias using Keithley

Recapture of secondary electron with bias voltage

Scanning positions with constant biased voltage in RRL

• Remaining signal proportional to the initial signal

Fixed Position with changing biased voltage in RRL

• Partial recapture appears for all beam intensities

Recapture of secondary electron with bias voltage

- Recapture of same ratio around 60%
- Possibilities:
- Higher delta-emission?
- Electron trapping by the beam?

Phenomenon dependent on energy?

• No dependency on energy

Phenomenon dependent on wire properties?

• Dependency on wire properties!

Proportion of delta-emission higher than expected

Data from RRL (courtesy of M.Sapinski)

- Simulation using Geant 4 and Sternglass formula:
- Low Secondary emission only40% of signal
- Rest is delta-electron

PSI

Contribution of secondary emission in signal

Material	Energy (MeV)	Secondary emission contribution(%)	Diameter (µm)	Location	Experimental Value(%)
Carbon fiber	72	36%	33	RRL	35-40
Carbon fiber	590	37%	33	RRL	35-40
Carbon nanotube	590	?	40	UCN	60-65
Molybdenum	590	59 %	25	UCN	40-45
Molybdenum	590	59%	25	SINQ	55-60

Voltage vs. Intensity (Combined Data)

• Increase of the voltage required to recapture secondary electrons with increase of Beam intensity

Fit of the previous curves with this sigmoid function:

$$I(V) = \frac{1 - I_{\infty}}{(1 + e^{\alpha (V - V_0)})^{\beta}} + I_{\infty}$$

- Linear tendency of the voltage required
- Wire intensity bit linear but at random place

- Increase of the voltage required to recapture secondary electrons
- Dependence of orbit spacing (and energy) for recapture

Beam electric field and potential

Electric Potential and Electric Field along x

20 1000 - 500 18 Ф(X) [V] E_x [V/m] 0 16 -500 14 -1000-7.5 -5.0 0.0 2.5 5.0 7.5 -10.0-2.5 10.0 x [mm]

1.5 mA Beam alone at 590 MeV

1.5 mA Beam with two neighboring orbits spaced of 1cm on both sides at 590 MeV

Simulation softwares

- CST-Studio:
- Simulation of electromagnetic fields and particle tracking
- General tool for simulation
- PIC Solver: Particle tracking for both protons and electrons
- Matter interaction
- Long simulations

- Virtual-IPM*:
- Simulation of the electron/ion transport in Ionization Profile Monitors
- Particle tracking only for electrons
- No matter interaction
- Quick simulations

*D. Vilsmeier. "Virtual-IPM Python Package Index .", Available: https://pypi.org/project/virtual-ipm

Electric field on wire (CST simulation)

1.5e+05

Wire in carbon fiber without bias (15µm radius / 1cm long) 1.5mm Gaussian shaped 590Mev beam at 1.5 mA

•

۲

wire

Reaction of the wire:

Illustration of the distortion of the bunch space potential by the probe wire.

"The larger bunch potential results in a locally repelling electric field for the emitted electrons"

R. Doelling*, about wire scanners in CSNS-linac **

* Effect of bunch potential and bias voltage on wire monitor signal ,id:HIPA-DIAGNO-DR84-071.00-22.02.2022 ** J. L. Sun et al., Study with wire scanner and beam loss monitors at CSNS-linac, IPAC2019, https://accelconf.web.cern.ch/ipac2019/papers/wepgw053.pdf

Electrostatic shielding

- Beam impact does not directly affect electrons
- Beam impact alters the surface • charge distribution on the wire to counterbalance beam potential
- Wire is thin (few μ m) compared to the beam (few mm), so a high gradient resulting in high electric field
- **Resulting Electric field repels** electrons from the wire

Beam potential with wire

PSI

Simulations with Virtual-IPM

Settings:

- 1 neighboring orbit on both side spaced of 1 cm
- Beam at 590 MeV
- kinetic Energy of electrons: 5 eV (≈avg energy of secondary electrons)
- No time response
- Beam potential is entirely neutralized by the wire's surface charge distribution
- -end of simulation: 17.5ns after the middle of the bunch(≈time between bunch:20ns)
- Observation of the impact of the beam
- Good agreement with data

Simulations with CST

Proportion of electrons escaping the wire for different initial kinetic energy

30V wire in carbon fiber (15µm radius / 8cm long) 590Mev beam with 4 neighboring orbits (1cm) Electron spectrum:2.5-7.5eV 7

Simulations with CST: Particle Tracking of electrons

Without Beam

⊢–∣ 100 µm

With Beam

Simulation issues

- High-speed of protons and low-speed electrons
- Uncertainty on wire properties
- Uncertainty on the spectrum of secondary emission
- Real geometry of the system (cavities/metal plate,...)
- Other sources as RF field and magnetic field
- Simulation time

Thermionic emission

Different levels of thermionic emission at a similar fixed position with changing biased voltage in RRL for a 1.5 mA beam near 500 MeV

- < 10V/High decrease: Recapture of majority of thermionic emission
- 10V-35V/Small decrease: Recapture of thermionic electrons emitted closer to the beam
- >30V: Recapture of secondary electrons

PS

Thermionic emission

- < 10V/High decrease: Recapture of majority of thermionic emission
- 10V-35V/Small decrease: Recapture of thermionic electrons emitted closer to the beam
- >30V: Recapture of secondary electrons
- Higher spread of the spectrum

PSI

Thermionic electrons recaptured?

Position 2535mm: 123MeV orbit

Thermionic emission seems to be totally recaptured

Thermionic electrons recaptured?

Position 4028mm: 489 MeV

Thermionic electrons totally recaptured?

1.5mA beams rescaled/5V and 60V shifted, 123MeV

THANK YOU FOR YOUR ATTENTION

SPARE SLIDES

	$\frac{\mathbf{Density}}{[\mathrm{g/cm}^3]}$	Strength [GPa]	Melting temp [K]	Heat cap [J/mol K]	Ζ
CF	1.8	3.1	3915	8.5	6
\mathbf{Be}	1.8	0.8	1560	16.4	4
\mathbf{SiC}	3.16	4.0	3100	1.1	12.6
\mathbf{Mo}	10.3	2.1	2896	24.1	42
\mathbf{Ta}	16.7	0.7	3290	25.6	73
\mathbf{W}	19.3	3.4	3695	24.3	74
CNT	0.2	0.5	3915	7.2	6

Delta/Secondary contribution

33 µm carbon fibre.

proton energy	T_{max}	emm.prob	E_{avg}
72 MeV	160 keV	7.34%	3 keV
590 MeV	1.69 MeV	1.93%	92 keV
3 GeV	17 MeV	1.34%	150 keV
450 GeV	155 GeV	1.29%	297 keV

Table 1: Maximum and average energy of delta electrons for Table 2: Secondary emission yield (SEY) assuming that the protons cross two surfaces (go through the target)

proton energy	Carbon	Mo	Tungsten
72 MeV	4.06%	14.87%	21.69%
590 MeV	1.14%	4.19%	6.11%
3 GeV	0.93%	3.42%	4.99%
450 GeV	1.66%	6.06%	8.84%

Possible impact of magnetic field

Limits on bias voltage

Limits on bias voltage: Cross-talk

Limits on bias voltage

Recapture of electrons coming from other sources

Thermionic Emission : CST simulation

30V wire in carbon fiber (15µm radius / 8cm long) 590Mev beam with 4 neighboring orbits (1cm) Electron spectrum: 0-1 eV

Particle Tracking of 5-eV electrons

Perspectives on new method

• Idea:

Using the AC behavior of the signal to detect only secondary emission

• Method:

Narrow-band filter

- Problems:
- Voltage Filter
- Low current
- High RF signal

Recap: Beam impact on electron recapture

