

UNIVETZITET U SARAJEVU

PRIRODNO – MATEMATIČKI FAKULTET

ODSJEK ZA FIZIKU

II CIKLUS STUDIJA – FIZIKA – MEDICINSKA RADIJACIONA FIZIKA

SIMULATION OF LOW ENERGY BEAM

TRANSPORT

ZAVRŠNI RAD II CIKLUSA STUDIJA

Mentori: Kandidat:

Dr. Mariusz Sapinski Benjamin Dedić

Prof. dr. Adnan Beganović

Sarajevo, oktobar 2021.

II

I present gratitude to my mentors Dr. Mariusz Sapinski and prof. dr. Adnan

Beganović for support and assistance in choosing the topic and writing this

master thesis.

I also thank my family and friends who were supportive during the process of

writing the paper.

III

Table of contents

Table of contents .. III

1 Introduction .. 1

1.1 A brief introduction .. 1

1.2 History of accelerators ... 1

1.2.1 The main timeline ... 1

1.2.2 Second timeline .. 2

1.2.3 Third timeline ... 3

1.2.4 Development after the middle of the 20th century .. 4

1.3 Theoretical introduction ... 5

1.3.1 Introduction into electrodynamics .. 5

1.3.2 Low energy beam transport .. 6

1.3.2.1 Beamline elements .. 6

1.3.2.1.1 Immersion lens ... 7

1.3.2.1.2 Einzel lens ... 7

1.3.2.1.3 Solenoid lens ... 8

1.3.2.1.4 Quadrupole lenses ... 9

1.3.3 Beam emittance .. 10

1.3.3.1 Emittance ellipse ... 10

1.3.3.2 R.m.s emittance ... 11

1.3.3.3 Amount of beam inside the emittance ellipse ... 12

1.3.3.4 Normalization of emittance ... 12

1.3.3.5 Emittance from plasma temperature ... 13

1.3.3.6 Emittance from solenoidal magnetic (B) field .. 13

1.3.4 Space charge ... 14

1.3.4.1 Space charge effects on beam ... 15

1.3.4.2 Space charge compensation .. 16

IV

1.3.5 Beam formation .. 16

1.3.5.1 Space charge limited emission .. 17

1.3.5.2 Electrode geometry ... 18

1.3.5.3 Positive ion plasma extraction .. 18

1.3.5.4 Negative ion plasma extraction ... 19

2 Materials and methods ... 21

2.1 Short description of programing languages ... 21

2.1.1 C++ ... 21

2.1.2 Python ... 21

2.1.3 MAD - Methodical Accelerator Design ... 21

2.1.4 Ion Beam Simulation (IBSimu) .. 22

2.2 Description of the code .. 22

2.2.1 C++ script ... 22

2.2.2 Python script ... 27

2.3 ECRIS – Nanogan and Supernanogan.. 27

2.3.1 About the source – Nanogan .. 27

2.3.2 About the source – Supernanogan .. 28

2.4 Theoretical calculations .. 29

2.5 Parameters for matching to the RFQ .. 31

3 Results and discussion .. 32

3.1 Tutorial version .. 32

3.2 Discussion about parameters .. 33

3.3 Addition of electrodes .. 35

3.4 Expansion of the code .. 38

3.5 Control script for calculating emittance from the extraction parameters 40

3.6 Optimization of beam parameters .. 41

3.6.1 First iteration of the code ... 41

V

3.6.2 Second iteration of the code ... 42

3.6.3 Third iteration of the code .. 44

3.7 Final version of the code .. 46

3.8 Matching to the RFQ .. 48

3.9 Future addition to the code and possible outcomes .. 52

3.10 Analysis of the parameters ... 53

4 Conclusion .. 55

5 References .. 56

6 Addition .. 59

6.1 IBSimu code ... 59

6.2 Python script ... 62

1

1 Introduction

1.1 A brief introduction

High-energy physics research has always been the driving force behind the development of

particle accelerators. They started life in physics research laboratories in glass envelopes sealed

with varnish and putty with shining electrodes and frequent discharges, but they have long since

outgrown this environment to become large-scale facilities offering services to large

communities. Although the particle physics community is the main group a lot more groups

have joined in as the interest for high energy as well as the low energy particles is one of the

fastest growing branches of physics. Furthermore, there is a branch of physics dedicated to the

accelerators called accelerator physics.(1)

1.2 History of accelerators

The History of accelerators can be divided into three different roots that are based on the idea

for different acceleration mechanisms.(2)

1.2.1 The main timeline

The first root to be described is generally taken as the principal "history line", since it was the

logical consequence of the vigorous physics research program in progress at the turn of the

century. Particle physics research was the forefront behind the accelerator development and

high-energy physics can be presented as the birthplace. In the table (Table 1) are presented the

main events from the end of 19th century to the early 20th century which show the progression

through atomic physics to nuclear physics.(3)

2

Table 1: list of main events from the 19th century to the early 20th century representing the

progression of atomic physics to nuclear physics (2)

YEAR EVENT

1895 Lenard. Electron scattering on gases (Nobel Prize) – discovered electrons of

energies lower than 100 keV and the first electrostatic generator – Wimschurst

machine

1913 Franck and Hertz excited electron shells by electron bombardment.

1906 Rutherford bombards mica sheet with natural alphas and develops the theory of

atomic scattering – reached the energies of several MeV with alpha particles

1911 Rutherford publishes theory of atomic structure.

1919 Rutherford induces a nuclear reaction with natural alphas. Rutherford believes he

needs a source of many MeV to continue research on the nucleus. This is far

beyond the electrostatic machines then existing.

1928 Gamov predicts tunnelling and perhaps 500 keV would suffice.

1928 Cockcroft & Walton start designing an 800 kV generator encouraged by

Rutherford.

1932 Generator reaches 700 kV and Cockcroft & Walton split lithium atom with only

400 keV protons. They received the Nobel Prize in 1951.

At about the same time as Cockroft and Walton, Van de Graaff, an American who was in Oxford

as a Rhodes scholar, invented an electrostatic generator for nuclear physics research and later

in Princeton, he built his first machine, which reached a potential of 1.5 MV. It took some time

to develop the acceleration tube and this type of machine was not used for physics research

until well after the atom had been split in 1932. Two new features appeared in later versions

of the Van de Graaff generator. Firstly, the sparking threshold was raised by putting the

electrode system and accelerating tube in a high-pressure tank containing dry nitrogen, or

Freon, at 9-10 atmospheres, which enables operation typically up to 10 MV. The second was a

later development, which has the special name of the Tandem accelerator.(2)

1.2.2 Second timeline

The direct-voltage accelerators were the first to be exploited for nuclear physics research, but

they were limited to the maximum voltage that could be generated in the system (except for the

astute double use of the applied voltage in the Tandem). This limitation was too restrictive for

the requirements of high-energy physics. An alternative had been proposed in 1924 in Sweden

by Ising (4). He planned to repeatedly apply the same voltage to the particle using alternating

fields and his invention was to become the underlying principle of all of today's ultra-high

energy accelerators This is known as resonant acceleration.

3

In the table (Table 2) the second timeline is presented.

Table 2: chronology events in the second timeline of the history of accelerators(2)

YEAR EVENT

1924

Ising proposes time-varying fields across drift tubes. This is "resonant

acceleration", which can achieve energies above that given by the highest

voltage in the system.

1928
Wideröe demonstrates Ising's principle with a 1 MHz, 25 kV oscillator to

make 50 keV potassium ions.

1929 Lawrence, inspired by Wideröe and Ising, conceives the cyclotron.

1931
Livingston demonstrates the cyclotron by accelerating hydrogen ions to 80

keV.

1932

Lawrence's cyclotron produces 1.25 MeV protons and he also splits the atom

just a few weeks after Cockcroft and Walton (Lawrence received the Nobel

Prize in 1939).

The difference between the acceleration mechanisms of Cockcroft and Walton and Ising depend

upon whether the fields are static (conservative) or time-varying (nonconservative). The electric

field can be expressed in a very general form as the sum of two terms, the first being derived

from a scalar potential and the second from a vector potential,

 𝐸⃗ = −∇𝜙 −
δ

δ𝑡
𝐴 (1)

where 𝐵⃗ = ∇ × 𝐴 . (2)(5)

1.2.3 Third timeline

In the contrast to the first two timelines the third one is fainter and is based on the discoveries

by the first two. The third timeline starts with Wideröe (6,7), a Norvergian student, who

suggested a different acceleration mechanism now known as “betatron acceleration”. This

device, the betatron, is insensitive to relativistic effects and was therefore ideal for accelerating

electrons. The betatron has also the great advantages of being robust and simple. The one active

element is the power converter that drives the large inductive load of the main magnet. The

focusing and synchronization of the beam energy with the field level are both determined by

the geometry of the main magnet.

The third timeline can be tracked from the 1923. up until the middle of 20th century and the

events are described in the table (Table 3).

4

Table 3: events which are considered to be significant during accelerator development (2)

YEAR EVENT

1923

Wideröe, a young Norwegian student, draws in his laboratory notebook the

design of the betatron with the well-known 2-to-1 rule. Two years later he

adds the condition for radial stability but does not publish.

1927

Later in Aachen Wideröe makes a model betatron, but it does not work.

Discouraged he changes course and builds the linear accelerator mentioned in

(previous table second timeline cross refference).

1940
Kerst re-invents the betatron and builds the first working machine for 2.2 MeV

electrons.

1950 Kerst builds the world's largest betatron of 300 MeV.

The development of betatrons for high-energy physics was short, ending in 1950 when Kerst

built the world's largest betatron (300 MeV), but they continued to be built commercially for

hospitals and small laboratories where they were considered as reliable and cheap. In fact, the

betatron acceleration mechanism is still of prime importance. In the present-day synchrotron,

there is a small contribution to the beam's acceleration which arises from the increasing field in

the main dipoles. If an accurate description of the longitudinal motion is required, then the

betatron effect has to be included.

1.2.4 Development after the middle of the 20th century

By the 1940's three acceleration mechanisms had been demonstrated: DC acceleration, resonant

acceleration and the betatron mechanism. In fact, there were to be no new ideas for acceleration

mechanisms until the mid-1960's, when collective acceleration was proposed in which heavy

ions are accelerated in the potential well of an electron ring and the 1980's when there were

several Workshops devoted entirely to finding new acceleration techniques. (8)

Multiple accelerators were designed during this brief period of human history and few of them

are listed in the continuation.

The microtron, sometimes known as the electron cyclotron, was an ingenious idea due to

Veksler. The electrons follow circular orbits of increasing radius, but with a common tangent.

An RF1 cavity positioned at the point of the common tangent supplies a constant energy

increment on each passage. The relativistic mass increase slows the revolution frequency of the

electrons, but by a constant increment on each passage. If this increment is a multiple of the RF

oscillator frequency, the electrons stay in phase, but on a different orbit. Microtrons operate at

microwave frequencies and are limited to tens of MeV. They are available commercially and

are sometimes used as an injector to a larger machine.

1 RF – radio frequent

5

The radio-frequency quadrupole (RFQ) suggested in 1970 by I. Kapchinski and V. Telyakov is

useful at low energies and is increasingly replacing the Cockcroft-Walton as injector. The RFQ

combines focusing and acceleration in the same RF field. (2)

The linear accelerator was eclipsed during the thirties by circular machines. However, the

advances in ultra-high frequency technology during World War II (radar) opened up new

possibilities and renewed interest in linac structures. Berkeley was first, with a proton linear

accelerator of 32 MeV built by Alvarez in 1946. The Alvarez accelerator has become very

popular as an injector for large proton and heavy-ion synchrotrons all over the world with

energies in the range of 50–200 MeV, that is essentially non-relativistic particles. The largest

proton linear accelerator to date is the 800 MeV 'pion factory' (LAMPF) at Los Alamos. The

first electron linear accelerators were studied at Stanford and at the Massachusetts Institute for

Technology (MIT) in 1946. This type of accelerator has also had a spectacular development,

up to the largest now in operation, the 50 GeV linear accelerator at the Stanford Linear

Accelerator Centre (SLAC). Like betatrons they have become very popular in fields outside

nuclear physics, particularly for medicine. (9)

1.3 Theoretical introduction

The purpose of this chapter is to provide the reader with the relevant concepts and equations

needed to understand the results in this thesis work. In the following chapter starts with brief

electrodynamics introduction and continuous with low-energy transport, beam characteristics

and beam formation.

1.3.1 Introduction into electrodynamics

In principle, the task of beam extraction and the following low-energy beam transport (LEBT)

system are quite simple. The ion source extraction consists of the plasma electrode (the front

plate of the ion source), and at least one other electrode (the puller or extractor electrode), which

provides the electric field for accelerating the charged particles from the ion source to form an

ion beam. Whether or not the extraction contains any other electrodes, the beam leaves the

extraction at energy

 𝐸 = 𝑞(𝑉source − 𝑉beamline) (2)

defined by the charge q of the particles and the potential difference between the ion source,

Vsource, and the following beamline, Vbeamline. The intensity of the particle beam depends, as a

first approximation, on the flux of charged particles hitting the plasma electrode aperture. The

extracted ion beam current is calculated as:

 𝐼 =
1

4
𝐴𝑞𝑛𝑣̅ (3)

where A is the plasma electrode aperture, q is the charge of the particles, n is the ion density in

the plasma and v is the mean velocity of extracted particles in the ion source plasma. Assuming

a Maxwell– Boltzmann distribution for the extracted plasma particles, the mean velocity

 𝑣̅ = √
8𝑘𝑇

π𝑚
. (4)

6

From the point of view of the extraction, the plasma electrode aperture can be adjusted to tune

the beam intensity. The practical solutions are unfortunately much more complicated in most

cases. The applications following the LEBT, which typically are accelerators to bring the beam

to higher energies, often pose strict requirements for the ion beam parameters. (10)

Without careful design of the focusing elements, the space-charge force of the beam blows up

the beam to the walls of the vacuum chamber, and only a part of the generated beam gets

transported to the following accelerator. The extraction focusing systems must also provide

some adjustability because, in most cases, the plasma conditions might not be constant in day-

to-day operations. (11)

1.3.2 Low energy beam transport

The ion beam travels in the beam transport line from one ion optical element to another along

a curved path, which is usually defined as the longitudinal direction z. The transverse directions

x and y are defined relative to the center of the transport line, the optical axis, where x = 0 and

y = 0. The transport line is usually designed in such a way that a so-called reference particle

travels along the optical axis with nominal design parameters. The ion beam is an ensemble of

charged particles around the reference particle, with each individual particle at any given time

described by spatial coordinates (x, y, z) and momentum coordinates (px, py, pz). This six-

dimensional2 space is known as the particle phase space. In addition to these coordinates, often

inclination angles α and β or the corresponding tangents x0 and y0 are used. These are defined

by 𝑥′ =tan 𝛼 =
𝑝𝑥

𝑝𝑧
 and 𝑦′ =tan 𝛽 =

𝑝𝑦

𝑝𝑧
.

The motion of a charged particle in electromagnetic fields E and B is described by the Lorentz

force F and Newton’s second law, giving

d𝑝

d𝑡
= 𝐹 = 𝑞(𝐸⃗ + 𝑣 × 𝐵⃗) (5)

where p is the momentum and v is the velocity of the particle with charge q. In general, the

trajectory of a charged particle can be calculated by integrating the equation of motion if the

fields are known. In the case of beam transport, the fields have two origins:

i) External field – generated by ion optical elements;

ii) Beam generated fields (11)

1.3.2.1 Beamline elements

The ion optical elements of the beam transport line come in two varieties: magnetic and electric.

In the case of high-energy beams, where v ≈ c, magnetic elements are used because the force,

which is created with an easily produced magnetic field of 1 T, equals the force from an electric

field of 300
MV

m
, which is impossible to produce in a practical device. (11,12)

2
 The six dimensional space is the general case while in practice 2D and 4D phase spaces can be used depending

on the problem setup.

7

Since there is no electric field in the LEBT and the achievable forces are comparable, the other

factors such as size, cost, power consumption and the effects of beam space-charge

compensation are the ones that play a bigger role. An important factor in the selection of the

type of beamline elements is also the fact that electrostatic fields do not separate ion species. In

electrostatic systems the particles follow trajectories defined only by the system voltages. The

magnetic elements, on the other hand, have a dependence on mass-to-charge ratio m/q. This

allows separation of different particle species from each other. The common beamline elements

that are used to build LEBT systems include immersion lens, einzel lens, solenoid, dipole and

quadrupole lenses. (13,14)

1.3.2.1.1 Immersion lens

The immersion lens (or gap lens) is simply a system of two electrodes with a potential difference

of ∆V = V2 − V1. The lens can be either accelerating or decelerating and in addition to changing

the particle energy by q∆V. This element can be used for focusing as well. The focal length of

the immersion lens is given by (13)

 𝑓

𝐿
=

4(√
𝑉1
𝑉2
+ 1)

𝑉1
𝑉2
+
𝑉2
𝑉1
− 2

 (6)

where L is the distance between the electrodes. The electrostatic extraction systems always have

gap lenses, which accelerate the beam to the required energy. The first acceleration gap (length

between plasma and puller electrode) is a special case of the immersion lens because of the

effect of the plasma on the electric field. (11)

1.3.2.1.2 Einzel lens

The einzel lens is made by combining two gap lenses into a system of three electrodes with first

and last electrodes at the beamline potential V0 and the center electrode at a different potential

Veinzel. The einzel lens, which is in most cases cylindrically symmetric for round, is the main

tool for beam focusing in many electrostatic extraction systems. The einzel focusing power is

dependent on the geometry and the voltage ratio 𝑅 =
𝑉𝑒𝑖𝑛𝑧𝑒𝑙−𝑉0

𝑉0
, assuming that at the zero

potential the kinetic energy is zero as well. The einzel lens may have the first gap accelerating

and the second gap decelerating (known as accelerating einzel lens, R > 0) or vice versa (known

as decelerating einzel lens, R < 0). Accelerating einzel lenses should be preferred if the required

higher voltage (and electric fields) can be handled, because they have lower spherical

aberrations than decelerating einzel lenses, especially when the required refractive power is

high. A special case of the einzel lens, where the first electrode and the third electrode are at

different potentials, is also possible. This type of setup is known as a three-aperture immersion

lens or zoom lens. (11,13)

8

1.3.2.1.3 Solenoid lens

A solenoid lens is the magnetic equivalent of the electrostatic einzel lens. It consists of

rotationally symmetric coils wound around the beam tube, creating a longitudinal magnetic

field with the maximum value at the center of the solenoid (15). The radial magnetic field at

the entrance of the solenoid gives the particle entering the field with vr = 0 at radius r0 an

azimuthal thrust

 𝑣𝜃 =
𝑞𝐵𝑟0
2𝑚

 (7)

which makes the trajectories helical inside the solenoid. At the exit of the solenoid, the particle

receives a thrust cancelling the azimuthal velocity, but leaving the particle with a radial velocity

 𝑣𝑟 = −
𝑟0𝑞

2

4𝑚2𝑣𝑧
∫ 𝐵2 d𝑧 (8)

This radial velocity causes the beam to converge towards the optical axis.(11) The refractive

power of the lens is given by

1

𝑓
=

𝑞2

8𝑚𝐸
∫ 𝐵2 d𝑧 (9)

Figure 1: Implementation of an einzel lens showing the ion path. Six plates are parallel to the ion flight

path with the middle plate at a particular potential.

Figure 2: Cutaway view of a solenoid lens with elliptical apertures showing the

conformal mesh structure for the finite- element field calculation. The elliptical axes

are rotated so that the exit beam is parallel to the x - y axes of the simulation.

9

1.3.2.1.4 Quadrupole lenses

Electrostatic and magnetic quadrupoles are often used as focusing elements in LEBT systems

in addition to einzel lenses and solenoids. The electrostatic quadrupole consists of four

hyperbolic electrodes placed symmetrically around the beam axis with positive potential Vquad

on the electrodes in the +x and −x directions and negative potential −Vquad on the electrodes

in the +y and −y directions. The potential is given by 𝑉 =
𝑥2−𝑦2

𝑎2
𝑉𝑞𝑢𝑎𝑑 where a represents the

radius of the quadrupole. Regarding to this the electrostatic field is given by:

 𝐸⃗ =
−2𝑉𝑞𝑢𝑎𝑑

𝑎2
𝑥𝑥̂ +

2𝑉𝑞𝑢𝑎𝑑

𝑎2
𝑦𝑦̂ (10)

while analyzing the formula (10), the conclusion is reached that the quadrupole focuses the

beam in the x direction while it defocuses it in the y direction. Refractive power of these systems

on x and y axis are (respectively)

1

𝑓𝑥
= 𝑘 sin (𝑘𝐿) (11)

1

𝑓𝑦
= −𝑘 sinh (𝑘𝐿) (12)

where 𝑘2 =
𝑉𝑞𝑢𝑎𝑑

𝑎𝑉0
 and L represents the effective length of the quadrupole.

Magnetic quadrupole has almost the same construction as the electrostatic one where the

magnet poles are made to be hyperbolic and windings are coiled in such a way that every other

pole has magnetic flux in to the beam and every other out of the beam. The magnetic field in

such a system is

 𝐵⃗ =
𝐵𝑇
𝑎
𝑥𝑥̂ +

𝐵𝑇
𝑎
𝑦𝑦̂ (13)

where BT is the magnetic field density at the pole tip. Velocity of the positive particles is

𝑣 = 𝑣𝑧𝑧̂ and the force on them is 𝐹 =
𝑞𝐵𝑇𝑣𝑧(−𝑥𝑥̂+𝑦𝑦̂)

𝑎
 which is again focusing on the x direction

and defocusing on the y direction. The force leads to the same refractive power as in (equations

for fx and fy) but the value of k is 𝑘𝐵
2 =

𝑞𝐵𝑇

𝑝𝑎
.

Quadrupole lenses are typically used as doublets or triplets for solutions that are focusing in

both transverse directions. Quadrupoles can also be used for transforming asymmetric beams

such as slit beams from a Penning ion source, for example, into a round beam. (11)

10

1.3.3 Beam emittance

Emittance is defined as the six-dimensional volume limited by a contour of constant particle

density in the (x, px, y, py, z, pz) phase space. This volume obeys the Liouville theorem3 and is

constant in conservative fields. With practical accelerators, a more important beam quality

measure is the volume of the envelope surrounding the beam bunch. This is not conserved

generally, only in the case where the forces acting on the particles are linear. Regarding the

continuous (or long pulse) beams, where the longitudinal direction of the beam is of a lesser

interest, transverse distributions (x, x0) and (y, y0) are used instead of the full phase-space

distribution for simplicity. Also for these distributions the envelope surrounding the distribution

changes when nonlinear forces4 act on the particles. The size and shape of the transverse

distribution envelope are important quality measures for beams because most complex ion

optical devices such as accelerators have an acceptance window in the phase space within which

they can operate. (11)

1.3.3.1 Emittance ellipse

For calculation and modelling purposes, a simple shape is needed to model the ion beam

envelope in (x, x0) phase space. Real well-behaved ion beams usually have Gaussian

distributions in both x and x0 directions. Because the contours of two-dimensional (2D)

Gaussian distributions are ellipses, it is an obvious solution to use the ellipse as the model in

2D phase spaces (and ellipsoids in higher dimensions). The equation for an origin-centered

ellipse is

 𝛾𝑥2 + 2𝛼𝑥𝑥′ + 𝛽𝑥′2 = 𝜀 (14)

where the scaling

 𝛽𝛾 − 𝛼2 = 1 (15)

is chosen. The 𝜀 represents 2D transverse emittance while 𝛼, 𝛽, 𝛾 represent Twiss parameters

defining the ellipse rotation and aspect ratio. Area of the ellipse can be calculated as

 𝐴 = 𝜋𝜀 = 𝜋𝑅1𝑅2 (16)

where R1 and R2 represent the length of the big and the small axis of the ellipse (the radii of the

ellipse). Because of the connection between the area of the ellipse and ε, there is sometimes

confusion about whether to include π in the above formula for quoted emittance values. The

unit of emittance is mostly written as π mm mrad. This is used as an emphasis that the emittance

number is in relation to the radii and not the area of the ellipse. (5,11)

3
 The Liouville equation describes the time evolution of the phase space distribution function.

4
 Non-idealities of beamline elements, for example

11

1.3.3.2 R.m.s emittance

There are numerous ways to fit an ellipse to particle data. Often, a minimum-area ellipse

containing some fraction of the beam is wanted (e.g. ε90%), but unfortunately this is difficult to

produce in a robust. A well-defined way to produce the ellipse is by using a statistical definition

known as the r.m.s. emittance,

 𝜀𝑟.𝑚.𝑠 = √〈𝑥′2〉〈𝑥2〉 − 〈𝑥𝑥′〉2 (17)

where the values for 〈𝑥′2〉, 〈𝑥2〉 and 〈𝑥𝑥′〉 can be calculated as:

 〈𝑥′2〉 =
∬ 𝑥2𝐼(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′

∬ 𝐼(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
 (18)

 〈𝑥2〉 =
∬ 𝑥′2𝐼(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′

∬ 𝐼(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
 (19)

 〈𝑥𝑥′〉 =
∬ 𝑥𝑥′𝐼(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′

∬ 𝐼(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
 (20)

Figure 3: emittance ellipse geometry with the most important dimensions

12

I(x,x') describes the magnitude of the beam current at the differential area dxdx' of phase space

at the point (x.x'). Twiss parameters can be calculated from these particle distributions as

 𝛼 = −
〈𝑥𝑥′〉

𝜀
 (21)

 𝛽 =
〈𝑥2〉

𝜀
 (22)

 𝛾 =
〈𝑥′2〉

𝜀
 (23)

As it is assumed that the emittance distribution at the origin is centered we can say the values

for 〈𝑥′〉 and 〈𝑥〉 are 0. When measuring the emittance there are additional difficulties that are

caused by background noise and amplifier offset in the I (x, x') data. (11,16)

1.3.3.3 Amount of beam inside the emittance ellipse

To better understand the r.m.s. emittance the amount of beam enclosed by the ellipse can be

considered. This depends on the particle distribution shape. For real measured distributions,

there is no direct rule. For theoretical known distributions, this can be calculated. The two most

used model distributions used for beams are the Bi-Gaussian and the Kapchinskij–Vladimirskij

(KV) distribution.(13) The Bi-Gaussian distribution orientated along the axis is given by:

 I(𝑥, 𝑥′) =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−
1
2
(
𝑥2

𝜎𝑥2
+
𝑥′
2

𝜎𝑥′
2)

 (24)

𝜎𝑥 and 𝜎𝑥′ are standard deviations of the distribution in the 𝑥 and 𝑥′ directions. In practice the

distribution can be additionally rotated by an angle.

The KV distribution has a uniform beam density inside an elliptical phase space given by:

 I(𝑥, 𝑥′) = f(𝑥) = {
1

𝜋𝜀
 , 𝑖𝑓 𝛾𝑥2 + 2𝛼𝑥𝑥′ + 𝛽𝑥′2 ≤ 𝜀 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (25)

1.3.3.4 Normalization of emittance

The transverse emittance defined in (x, x0) space has the property that it is also dependent on

the longitudinal beam velocity. If the beam is accelerated and pz increases, then 𝑥0 =
𝑝𝑥

𝑝𝑧

decreases. (17) This effect is eliminated by normalizing the velocity to the speed of light c,

which gives

 𝑥′𝑛 =
𝑝𝑥
𝑝𝑧1

𝑣𝑧1
𝑐
=
𝑣𝑥
𝑐
=
𝑝𝑥
𝑝𝑧2

𝑣𝑧2
𝑐

 (26)

at non relativistic velocities. The normalized emittance can be calculated from regular emittance

with:

 𝜀𝑛 = 𝜀
𝑣𝑧
𝑐

 (27)

13

1.3.3.5 Emittance from plasma temperature

An ion beam formed by letting charged particles from a plasma be emitted from a round

aperture has an emittance defined by the plasma ion temperature T and the aperture radius r,

assuming that the acceleration to velocity vz does not add aberrations. This minimum emittance

can be calculated by using (27) (28) (29) and (30) and using a particle distribution defined by a

circular extraction hole and Gaussian transverse ion distribution, i.e.

 I(𝑥, 𝑥′) =
2

𝜋𝑟2
√𝑟2 − 𝑥2√

𝑚

2𝜋𝑘𝑇
𝑒−
𝑚(𝑥′𝑣𝑧)

2

2𝑘𝑇 (28)

and after normalization the resulted r.m.s. emittance becomes

 𝜀𝑟𝑚𝑠,𝑛 =
1

2
√
𝑘𝑇

𝑚

𝑟

𝑐
 (29)

the calculation with a slit-beam extraction gives

 𝜀𝑟𝑚𝑠,𝑛 =
1

2
√
𝑘𝑇

3𝑚

𝜔

𝑐
 (30)

In the round aperture case, the emittance of the beam is linearly proportional to the plasma

aperture radius as well as the beam current is roughly proportional to the area of the plasma

aperture. Scaling of the aperture size does not therefore change the beam brightness and the

brightness in the first approximation is given as 𝐵 =
𝐼

𝜀𝑛,𝑥𝜀𝑛,𝑦
. (9,11,18)

1.3.3.6 Emittance from solenoidal magnetic (B) field

In electron cyclotron resonance (ECR) and microwave ion sources, there is a strong solenoidal

magnetic field at the plasma electrode location, where the beam formation happens and this has

a strong influence on the beam quality. As the particles exit the solenoidal magnetic field, they

receive an azimuthal thrust. The emittance of the beam can be calculated outside the solenoid

by considering the particle coordinates far away, where the azimuthal particle motion has

completely changed to radial motion and this is explained as:

 𝑟′ =
𝑣𝑟
𝑣𝑧
=
𝑣𝜃
𝑣𝑧
=
𝑞𝐵𝑟0
2𝑚𝑣𝑧

 (31)

In that case the r.m.s. emittance of the beam can be calculated from this radius and the radius

of the constant current density beam at the extraction. The r.m.s. emittance and the normalized

emittance are then stated as (respectively):

 𝜀𝑟𝑚𝑠 =
1

4
𝑟′𝑟0 =

𝑞𝐵𝑟0
2

8𝑚𝑣𝑧
 ⇒ 𝜀𝑟𝑚𝑠,𝑛 =

𝑞𝐵𝑟0
2

8𝑚𝑐
 (32)

14

In the case of ECR ion sources (ECRIS) the effects of the magnetic field dominate the emittance

compared to the effect of the ion temperature. That is the result of high magnetic fields in the

device itself. But in the case of practice, the formula given here is not able to predict the

emittance values as the emittances of higher charge state ions have lower emittances than their

counterparts (the lower charge state ions). This is what contradicts the formula (32) and the

only solution is that the particles are not extracted from uniform plasma. This may also be

considered that the higher charged particles are closer to the axis at the extraction aperture so

their emittance is lower. (19)

1.3.4 Space charge

Ion beam charge density can be defined as:

 𝜌 =
𝐽

𝑣
=
𝐼

𝐴𝑣
 (33)

and it plays a major role in beam extraction systems where we can find high current densities

and low velocities compared to other parts of the whole accelerator system. Space charge

induces forces which lead to the increase of divergence and emittance. This effect lowers when

the magnetic force that is generated by the beam particles compensates the “blow-up”, but the

effect of the magnetic field is negligible at velocities much lower than the speed of light

(𝑣 ≪ 𝑐). (11,20)

15

1.3.4.1 Space charge effects on beam

If the assumption is that the beam is cylindrical with a constant current density with a radius of

r and it propagates with constant velocity of vz, then the electric field is given by the Gauss law

and it is:

 𝐸 = {
𝐼

2𝜋𝜀0𝑣𝑧

𝑟

𝑟𝑏𝑒𝑎𝑚
2 , 𝑖𝑓 𝑟 ≤ 𝑟𝑏𝑒𝑎𝑚

𝐼

2𝜋𝜀0𝑣𝑧

1

𝑟
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (34)

the potential inside a beam tube is therefore:

𝜙 = {
𝐼

2𝜋𝜀0𝑣
[
𝑟2

2𝑟𝑏𝑒𝑎𝑚
2 +𝑙𝑜𝑔 𝑙𝑜𝑔 (

𝑟𝑏𝑒𝑎𝑚
𝑟𝑡𝑢𝑏𝑒

) −
1

2
] , 𝑖𝑓 𝑟 ≤ 𝑟𝑏𝑒𝑎𝑚

𝐼

2𝜋𝜀0𝑣
𝑙𝑜𝑔 𝑙𝑜𝑔 (

𝑟

𝑟𝑡𝑢𝑏𝑒
) ,

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (35)

The equation for the constant current density electric field given by the equation (number here)

is a linear value and it does not cause emittance growth but it does cause increase of the

divergence of the beam. A particle at the beam boundary experiences the force:

 𝐹𝑟 = 𝑞𝐸𝑟 = 𝑚𝑎𝑟 =
𝑞𝐼

2𝜋𝜀0𝑟𝑣𝑧
 (36)

in that case the particle trajectory is calculated as

 𝑎𝑟 =
𝑑2𝑟

𝑑𝑡2
=
𝑑2𝑟

𝑑𝑧2
𝑑2𝑧

𝑑𝑡2
= 𝑣𝑧

2
𝑑2𝑟

𝑑𝑧2
 ⇒

𝑑2𝑟

𝑑𝑧2
=
1

𝑣𝑧2
𝑎𝑟 =

𝑞𝐼

2𝜋𝜀0𝑟𝑣𝑧
3
𝑎𝑟 = 𝐾

1

𝑟
 (37)

With the implementation of simple differential calculus and assuming the divergence is small,

and that
d𝑟

d𝑧
= 0 at 𝑧 = 0 the projectile trajectory is: (21)

d𝑟

d𝑧
= √2𝐾 log log

𝑟

𝑟0
 ⇒ 𝑧 =

𝑟0

√2𝐾
f (
𝑟

𝑟0
) 𝑤ℎ𝑒𝑟𝑒 f (

𝑟

𝑟0
) = ∫

𝑟
𝑟0

𝑦=1

d𝑦

√log 𝑦
. (38)

Function f cannot be calculated analytically but can be estimated numerically as an estimation

of divergence. E.G. a parallel zero-emittance beam of 181Ta20+ accelerated with 60 kV has an

initial radius of r0 = 15 mm. The size of a 120 mA beam after a drift of 100 mm can be solved

from f (
𝑟

𝑟0
) = 1.189, which gives r = 20 mm.

With practical drifting low-energy beams, a more realistic model for the beam distribution is

Bi-Gaussian, for example. This kind of distribution leads to nonlinear space-charge forces,

which cause emittance growth in addition to increase of beam divergence. Computer

simulations are required to estimate these effects. (11)

16

1.3.4.2 Space charge compensation

The potential well of the beam formed by the accelerated charged particles acts as a trap for

oppositely charged particles in areas where there are no external electric fields to drain the

created charges. These particles compensate for the charge density of the beam, decreasing the

depth of the potential well and therefore also decreasing the magnitude of the beam space-

charge effects described in chapter 1.3.1. This process is called space charge compensation.

 The most abundant process for the production of compensating particles is the ionization of

the background gas within the beam. In the case of positive ion beams, the electrons produced

in the background gas ionization are trapped in the beam, while slow positive ions are repelled

to the beamline walls. In the case of negative ion beams, the compensating particles are the

positive ions created in the gas. The creation rate of the compensating particles can be estimated

with

d𝑛𝑐
d𝑡

= 𝛷𝑛𝑔𝑎𝑠𝜎𝑖 (39)

in which 𝛷 represents the flux of particles in the beam, while 𝑛𝑔𝑎𝑠 represents the gas density

and the 𝜎𝑖 ionization cross-section. If the creation rate is high enough, the space-charge

compensation is finally limited by the leakage of compensating particles from the potential well

as the compensation factor approaches 100%. The compensation factor achieved in a real

system is difficult to estimate accurately because it depends on the lifetime of the compensating

particles in the potential well. Most important processes affecting the lifetime are:

i. leakage of particles at the beamline ends, which can be limited with accelerating einzel

lenses or magnetic fields

ii. recombinative processes

iii. scattering processes leading to ejection of particles from the potential well.

Assuming that the creation rate of compensating particles is high, the time-scale for achieving

full compensation is

 𝜏 =
𝜌𝑏𝑒𝑎𝑚

𝑒
d𝑛𝑐
d𝑡

=
𝑄

𝑣𝑛𝑔𝑎𝑠𝜎𝑖
 (40)

Where Q stands for the charge state of the beam and v is the velocity of the beam. (22,23)

1.3.5 Beam formation

The assumption that was used in the previous chapters is that the ion beam is formed by

accelerating the plasma particles and colliding them with the plasma electrode aperture which

then for a product has the formation of the quasi neutral plasma and the un-neutralized beam.

In the following chapter the physics of beam formation is analyzed in more detail. (9)

17

1.3.5.1 Space charge limited emission

In the first acceleration gap, where the beam is formed, the space-charge forces acting on the

beam are largest. The situation can be evaluated in one dimension by assuming a beam starting

with zero velocity with Poisson equation

d2𝜙

d𝑧2
= −

𝜌

𝜀0
= −

𝐽

𝜀0
√
𝑚

2𝑞𝜙
 (41)

where z defines the location, 𝜙 is the gap potentials, J represents the beam current density and

𝜀0 is the permittivity of vacuum. The emission surface is at 𝜙 = 0 (𝑎𝑡 𝑧 = 0) and the extraction

surface is at the potential 𝜙 = 𝑉 (𝑎𝑡 𝑧 = 𝑑). For J=0 potential distribution is linear. As the

emission current density increases, the electric field at the emission surface decreases until it

becomes zero. At that point the emission current is at the maximum level, for which Eq. (55)

can be solved with the boundary condition
d𝜙

d𝑧
= 0 (𝑎𝑡 𝑧 = 0). This condition is known as space

charge limited emission, and the resulting limit for the maximum emission current density can

be calculated using the following equation, which is known as the Child–Langmuir law (24):

 𝐽𝑚𝑎𝑥 =
4

9
𝜀0√

2𝑞

𝑚

𝑉
3
2

𝑑2
 (42)

The plasma ion sources are typically operated in emission-limited mode, i.e. the potential

difference between the plasma electrode and puller electrode is made sufficiently large to

handle the beam space charge. The law in the form shown here is not strictly valid for ion source

plasma extraction because of the effects of plasma neutralization and higher starting velocity of

particles in plasma extraction. The physics of the space-charge limit is still valid and the Child–

Langmuir law can be used to estimate it. In any system, the maximum extractable current is

dependent on the geometry, the emission current density and the voltage via the space-charge

limit. In the space-charge-limited region, the current is proportional to 𝑉
3

2. This leads to the

definition of the beam purveyance as:

 𝑃 =
𝐼

𝑉
3
2

 (43)

which is the proportionality constant describing the system. As long as the emission is space-

charge limited, the beam purveyance is roughly constant. When the voltage is further increased

and the beam emission is no longer space-charge-limited, the beam purveyance decreases. (11)

18

1.3.5.2 Electrode geometry

The space-charge forces try to blow up the beam, as was shown above. This happens especially

in the first acceleration gap because of the low velocity of the beam. To counteract the space-

charge forces in the transverse direction, the electrodes can be shaped in such a way that the

electric field in the first gap is not only accelerating but also focusing. In the case of space-

charge limited surface emitted electrons, there is a perfect solution providing a parallel electron

beam accelerated from the cathode. The solution is to have a field shaping electrode around the

cathode (at cathode potential) in a 67.5 ◦ angle with respect to the emitting surface normal. This

geometry is known as Pierce geometry. For plasma ion sources, there is no such magic

geometry because the ions do not start from a fixed surface, but from plasma with varying

starting conditions. (5,11,25)

1.3.5.3 Positive ion plasma extraction

In the case of ion plasma extraction, the beam formation is more complicated than in the case

of surface emitted electrons described above. The ions are born in the quasi neutral plasma and

get extracted into the un-neutralized beam. It is obvious that the extraction cannot be modelled

without considering the neutralizing effect of the plasma. The simplest description of the

necessary transition layer or plasma sheath was given by Bohm for an ion-electron plasma (26).

The ions are assumed to arrive from the bulk plasma into the sheath with velocity v0. The charge

density of ions can be calculated by assuming a quasi-neutral situation 𝜌0 = 𝜌𝑖 = 𝜌𝑒 at the bulk

plasma in the plasma potential 𝜙 = 𝜙𝑃, where 𝜙 = 𝜙𝑤𝑎𝑙𝑙 = 0 is the plasma electrode potential.

Using ion continuity 𝜌0𝑣0 = 𝜌𝑖𝑣𝑖 and energy conservation
𝑚𝑖𝑣𝑖

2

2
=
𝑚𝑖𝑣0

2

2
− 𝑞𝑖(𝜙 − 𝜑𝑃), the ion

density becomes

 𝜌𝑖 = 𝜌0√1 −
𝑞𝑖(𝜙 − 𝜙𝑃)

𝑚𝑖𝑣0
2 . (44)

The electrons are assumed to be in thermal equilibrium and therefore they follow the Boltzmann

distribution:

 𝜌𝑒 = 𝜌0𝑒
𝑒(𝜙−𝜑𝑃)
𝑘𝑇𝑒 . (45)

As the potential is described by the Poisson equation the potential can be calculated through:

d2𝜙

d𝑥2
= −

𝜌0

𝜀0
[√1 −

𝑞𝑖(𝜙−𝜙𝑃)

𝑚𝑖𝑣0
2 − 𝑒

𝑒𝜙

𝑘𝑇𝑒]. (46)

Figure 4: Perfectly parallel extraction of space-charge limited surface emission electrons using the

Pierce geometry

19

An important feature can be observed from the equation: the shielding condition
𝑑𝜙

𝑑𝑥
= 0 (𝑎𝑡 𝑥 = 0) is only fulfilled when the space charge is non-negative. The necessary

condition is:

 𝑣0 ≥ 𝑣𝐵 = √
𝑘𝑇𝑒
𝑚𝑖

 (47)

is known as the Bohm sheath criterion and vB as the Bohm velocity. The criterion sets a low

velocity limit for ions arriving at the sheath edge and in most cases the equation holds with

equality (27). The Poisson equation (46) is impossible to solve analytically, and often a

numerical approach or approximations are used even in the presented one-dimensional case.

The situation at the plasma extraction is simple according to the model. Positive ions flow from

quasi neutral bulk plasma into the extraction sheath with velocity vB. The compensating electron

density, which is defined by the potential, is equal to the ion density in bulk plasma and decays

exponentially towards the extraction. Far enough in the extraction, the compensation becomes

(essentially) zero. From the model, it is obvious that there is no well-defined boundary between

neutralized plasma and the un-neutralized extraction. Often, such a boundary would be useful

for judging the focusing action of the electric field close to the plasma electrode and for

communicating about the plasma sheath shape. Therefore, an equipotential surface at 𝜙𝑤𝑎𝑙𝑙 in

the case of positive ion extraction is often chosen as an artificial ‘boundary’, known as the

plasma meniscus. This choice works as a thought model even though in reality there is no such

boundary.

The process of beam formation varies not only with the extraction electric field strength and

shape, but also with the properties of the plasma, i.e. plasma density, electron and ion

temperatures. (11,28)

1.3.5.4 Negative ion plasma extraction

The negative ion plasma extraction model is similar to the previously mentioned positive ion

extraction model. The bulk plasma is at positive plasma potential 𝜙𝑃 and it is separated from

the plasma electrode at 𝜙 = 𝜙𝑤𝑎𝑙𝑙 = 0 𝑉 by a plasma sheath. Assumption is that the negative

ions, which are either volume or surface produced, are born near the wall potential and then are

extracted from a uniform plasma volume. These charges form a potential well and counteract

the formation of a saddle point at the extraction aperture. The potential deviates from zero going

into the bulk plasma due to the plasma potential and towards the extraction due to the

acceleration voltage. This potential structure causes positive ions from the bulk plasma to be

accelerated towards the extraction, having energy 𝑒𝜙𝑃 at zero potential. These ions propagate

until they are reflected back into the plasma by the increasing potential in the extraction. The

potential well acts as a trap for thermal positive ions. The negative ions and electrons are

accelerated from the wall potential towards the bulk plasma and more importantly towards the

extraction (29).

20

The negative ion plasma sheath from the zero potential towards the extraction is described by

the Poisson equation which is:

 𝛥𝜙 = −
𝜌

𝜀0
; 𝑤ℎ𝑖𝑙𝑒 𝜌 = 𝜌𝑛𝑒𝑔 + 𝜌𝑓 + 𝜌𝑡ℎ (48)

In the equation (48) 𝜌𝑛𝑒𝑔 represents the space charge density of negative particles, while 𝜌𝑓 and

𝜌𝑡ℎ represent the space charge density of fast positive ions and trapped thermal positive ions

respectively. This model allows several different negative ion species to be extracted from the

source and many positive ion species that are used as compensating plasma particles. The

thermal ions are prone to the Maxwellian velocity distribution where for each particle the

distribution is:

 𝜌𝑡ℎ = 𝜌𝑡ℎ,0𝑒
−
𝑒𝜙
𝑘𝑇𝑖 . (49)

𝜌𝑡ℎ,0 stands for the space charge density of thermal ion species at the wall potential while Ti is

the corresponding thermal ion temperature. Fast ions are decelerated and turned back into

plasma by extraction voltage. The space-charge distribution of the fast ions is defined by the

virtual cathode formation and it is:

 𝜌𝑓 = 𝜌𝑓,0 (1 −
𝑒𝜙

𝐸𝑖
) 𝑎𝑡 𝑒𝜙 < 𝐸𝑖. (50)

𝜌𝑓,0corresponds to the space charge density of the fast ions at the wall potential while Ei is the

corresponding kinetic energy which should have the value around 𝑒𝜙𝑃 as the particles are

flowing with the bulk plasma. The condition for quasi neutrality of the plasma is that:

 𝜌𝑛𝑒𝑔 + 𝜌𝑓 + 𝜌𝑡ℎ = 0 𝑎𝑡 𝜙 = 0 𝑉 (51)

Plasma sheath acts similarly to the positive ion extraction in the negative ion extraction. The

smallest beam emittance is achieved with an extraction field optimized for the plasma density

of the ion source. The biggest difference from the positive ion case is that, with a positive puller

electrode voltage, also electrons will be extracted from the plasma in addition to the negative

ions. Depending on the ion source, the amount of co-extracted electrons may be as high as 100–

200 times the amount of negative ions extracted or as low as 1 as is the case in caesiated surface

production H− sources. In the cases where the amount of electrons is high, the electrons need to

be dumped in a controlled manner, as soon as possible, to avoid unnecessary emittance growth

due to the additional space charge. Often the electron beam current is so high that the dumping

cannot be done at the full beam energy required by the application. To be stated differently, the

electron beam has to be dumped on an intermediate electrode at lower potential than ground.

(30–33)

21

2 Materials and methods

In the following chapter of the paper materials that have been used as well as the methods used

while designing the system as well as gathering the results will be discussed. The chapter will

be based on having a short explanation of program languages used such as C++ and Python and

for what they have been used, as well as the package IBSimu and the benefits it has. Once the

explanation of the technical part has been finished, the chapter will base upon the issue of

constructing geometries and providing all the iterations up until the final version of the code

which is used for gathering and analyzing the results.

2.1 Short description of programing languages

2.1.1 C++

C++ is a general-purpose programming language created by Bjarne Stroustrup as an extension

of the C programming language, or "C with Classes". The language has expanded significantly

over time, and modern C++ now has object-oriented, generic, and functional features in

addition to facilities for low-level memory manipulation. It is almost always implemented as a

compiled language. As a programing language it was designed with an orientation toward

system programming and embedded, resource-constrained software and large systems, with

performance, efficiency, and flexibility of use as its design highlights. C++ has also been found

useful in many other contexts, with key strengths being software infrastructure and resource-

constrained applications, including desktop applications, video games, servers (e.g. e-

commerce, web search, or databases), and performance-critical applications (e.g. telephone

switches or space probes). (34)

2.1.2 Python

Python is an interpreted high level, general purpose programming language. Its language

constructs as well as its object-oriented approach aim to help programmers write a clear and

logical code. Python is dynamically-typed. It supports multiple programming paradigms,

including structured (particularly procedural), object-oriented and functional programming.

Python is often described as a "batteries included" language due to its comprehensive standard

library.

 Guido van Rossum began working on Python in the late 1980s, as a successor to the ABC

programming language, and first released it in 1991 as Python 0.9.0. Python 2.0 was released

in 2000 and introduced new features, such as list comprehensions and a garbage collection

system using reference counting. Python 3.0 was released in 2008 and was a major revision of

the language that is not completely backward-compatible and much Python 2 code does not run

unmodified on Python 3. Python 2 was discontinued with version 2.7.18 in 2020.(35)

2.1.3 MAD - Methodical Accelerator Design

MAD-X is a project with a long history, aiming to be at the forefront of computational physics

in the field of particle accelerator design and simulation. Its scripting language is de facto the

standard to describe particle accelerators, simulate beam dynamics and optimize beam optics at

CERN.

22

MAD-X is the successor of MAD-8 and was first released in June, 2002. It offers most of the

MAD-8 functionalities, with some additions, corrections, and extensions. The most important

of these extensions is the Polymorphic Tracking Code (PTC) of E. Forest.

MAD-X is released for the Linux, Mac OS X and Windows platforms for 32 bit (on demand)

and 64 bit architectures. The source code is written in C, C++, Fortan77 and Fortran90. (36)

2.1.4 Ion Beam Simulation (IBSimu)

Ion Beam Simulator or IBSimu is an ion optical computer simulation package for ion optics,

plasma extraction and space charge dominated ion beam transport using Vlasov iteration. The

code has several capabilities for solving electric fields in a defined geometry and tracking

particles in electric and magnetic fields. The code is a constructed as a C++ library for maximal

versatility and openness. IBSimu is usable in Linux and Windows. IBSimu is released under

GNU General Public License. Notable features of the software are:

 Solid geometry definition using 2D DXF files, 3D STL files, mathematical formulation, etc.

 Finite Difference Method solver for 1D, 2D and 3D Poisson equations with edge smoothing.

 Particle trajectory iteration in self-consistently calculated electric and imported magnetic

fields.

 Space charge density calculation from trajectories.

 Vlasov iteration for self-consistent simulation of high space-charge beams.

 Nonlinear plasma models for positive and negative ion extraction.

 Interactive diagnostic tools.

 Object-oriented and highly customizable. (37,38)

2.2 Description of the code

The following chapter will be used as a brief introduction to custom commands which are used

to receive and analyze the data. C++ script is used as a main program for simulating and running

the problem of low energy beam extraction while the Python scripts are used to analyze the data

and receive necessary values for previously defined important variables which are used for

matching to the RFQ.

2.2.1 C++ script

The beginning of the script introduces libraries which are custom written and came as the part

of the package of IBSimu. Afterwards the constants are defined. They are used throughout the

main program and they are:

23

Table 4: list of constants which are used throughout the main program

CONSTANT VARIABLE VALUE

Mass of helium atom

in atomic mass units
Mass_4he_in_u 4.002602

Elementary charge e0 1.60217662e-19

Speed of light c0 299792458

After defining the constants in the program, the solid objects within the phase space are defined

such as electrodes, solenoids and other optical elements that are within the simulation area.

They are defined using the “bool” command whose syntax is as

“bool variable {logical statement}”.

As the case is within this program logical statement is equations of straight lines or ellipses and

circles defined by analytical geometry. Within this subprogram it is possible to define new

variables which are used.

Subprogram that follows the definition of geometries is the most important part of the program

and it consists of few different important aspects. In this subprogram following are defined:

 Size of the mesh5

Using the command with its syntax

“Geometry geom (simulation space6, definition of the simulation mesh, location of the

coordinate origin, size of the mesh)”

the full description of the area within which the particles are traveling is defined.

 Solids are defined as geometries and then afterwards can be used as electrodes

Command:

“Solid * sn = new FuncSolid(solid n); geom.set_solid (m, sn);”

is used to define previously plotted solids as functions that are representing electrodes (in

the case of the problem discussed within this paper) or other objects defined with “bool”. It

is of upmost importance to clarify that “sn”, “n” are numbers which are from 1 to max

defined number within C++, as well that the number “m” is, for user defined solids, greater

than 7 since the numbers from 1 to 6 are reserved for minimum x, maximum x, minimum

y, maximum y, minimum z, maximum z boundaries.

5 Area within which the simulation is taking place and the area in which the solid elements are defined and

presented
6 It can be 2D, 3D, cylindrical, etc.

24

 Electrodes potential defined and given a value

Code for defining the potential to the now already defined solids is

“geom.set_boundary(m, Bound(BOUND_DIRICHLET/NEUMANN), value));”.

Number “m” is the same number for the solids defined previously (or axis boundary

conditions) while the boundary condition is either Dirichlet or Neumann. Neumann

condition means constant first derivative of the potential with respect to the unit outward

normal of the surface while Dirichlet means constant potential on the surface. Neumann

condition is used to define the boundaries of the simulation box while Dirichlet is used for

the boundary conditions of the electrodes. Value is the value of potential of either the solids

previously defined or the box boundaries (such as x minimum, x maximum, etc.)

 Poisson equation is solved

Main part of the subroutine is consisted of solving the Poisson equation. After all the

boundary conditions and solids have been defined they are mapped with the function:

“geom.build_mesh()”.

Function which solves the equation is:

“EpotBiCGSTABSolver solver(geom)”,

while this function is used within this program it is important to underline that there are

multiple more solvers for the Poisson equation included in the package but the one stated

above is the most efficient.

The function “EpotBiCGSTABSolver solver” is not sufficient to solve the Poisson equation

alone. It is necessary to define the mesh-based scalar field, space charge electric field,

solving the interaction of the magnetic field which is produced, calculation of the interaction

of electric field at a location from the electric potential data. These parameters are initialized

with the following:

 “EpotBiCGSTABSolver solver(geom);

 EpotField epot(geom);

 MeshScalarField scharge(geom), scharge_ave(geom);

 MeshVectorField bfield;

 EpotEfield efield(epot);

 field_extrpl_e efldextrpl[6] = { FIELD_EXTRAPOLATE,

FIELD_EXTRAPOLATE, FIELD_SYMMETRIC_POTENTIAL,

FIELD_EXTRAPOLATE, FIELD_EXTRAPOLATE,

FIELD_EXTRAPOLATE };

 efield.set_extrapolation(efldextrpl);”

25

 Plasma is defined

Plasma is defined by using:

“InitialPlasma init_plasma(AXIS_X, 0.55e-3);”

in which we define the plasma on the x axis on the distance of 0.5 mm from the axis. The

values of the plasma potential is defined as a standard variable as well as the electron

temperature within the plasma which are as well defined with a function:

“solver.set_initial_plasma(Up, &init_plasma)”

 Particles are defined

Main part and the main point of the paper is yet to be defined. The particles are defined

within the Vlasov iteration loop after the initialization of plasma. They are defined with:

“pdb.add_2d_beam_with_energy (number of particles, current density,

Charge of the particles, particle mass, starting energy, parallel temperature,

Transverse temperature and the starting coordinates of the beam x1, y1, x2, y2)”

The measuring units for some of the values for particle definition are:

o Current density –
𝐴

𝑚2

o Charge of the particles – in electron charges

o Particle mass – in atomic units

o Starting energy – in electron volts (eV)

o Parallel temperature – in electron volts (eV)

o Transverse temperature – in electron volts (eV)

 Files necessary for further result analyzation are outputted within this subprogram

Within the subroutine codes for exporting the particle description at the exit of the extraction

system and the emittance values are written. For exporting the particles the code:

 “std::ofstream fileOut("name of the file");

for(size_t k = 0; k < pdb.size(); k++) {

 Particle2D &pp = pdb.particle(k);

 fileOut << std::setw(12) << pp.IQ() << " ";

 fileOut << std::setw(12) << pp.m() << " ";

 fileOut << std::setw(12) << pp.location() << " ";

 fileOut << std::setw(12) << pp.velocity() << " ";

 fileOut << "\n";”

26

The code prints out the values for the charge of the particles, mass of the particle, location

in the mesh (this is a control variable to filter the particles that have not reached the exit of

the extraction system) as well as the velocity of the particles. Location and velocities are

presented as Cartesian coordinates.

While the particles are used for later analysis the emittance file is there to provide the

crosscheck of the emittance value as well as the twiss parameters value between the values

calculated by the Python script and the values received directly from the main C++ code.

Code for the emittance file is given as:

“TrajectoryDiagnosticData tdata;

 std::vector<trajectory_diagnostic_e> diagnostics;

 diagnostics.push_back(DIAG_Y);

 diagnostics.push_back(DIAG_YP);

 pdb.trajectories_at_plane(tdata, AXIS_X, geom.max(0), diagnostics);

Emittance emit(tdata(0).data(), tdata(1).data());

ofstream dout("filename.txt", ios_base::app);

dout << emit.alpha() << " "

 << emit.beta() << " "

 << emit.epsilon() << "\n";

dout.close();”

 Plots are defined

At the end of the subroutine plots for the phase space and the emittance are defined with

implementing the functions which call upon the libraries which are used for plotting within

the IBSimu package.

The main part of the code is used to call up the subroutines which were previously explained

as well to run debugging and ignoring some errors of the C++ compiler which can be caused

by the IBSimu package.

27

2.2.2 Python script

As previously stated multiple times Python is used as a tool for analyzing the presenting the

results and finally for matching to the RFQ acceptance. Two scripts for Python are used.

1) First script is used for calculation of the emittance, plotting the emittance and calculating

the twiss parameters.

The script consists of already familiar modules. Main part of the script is the one that loads

in the data from the particles file from the output in the main code. When using the script,

it filters out only the particles that reach the end of extraction. When the data is filtered plot

of the emittance is plotted and from within the value of the statistical emittance is calculated.

Using the data, the twiss parameters are calculated. Using the definitions and equations

from the chapter (Error! Reference source not found.) the normalized beam emittance is c

alculated. The data calculated is then compared to the theoretical values of the beam

emittance gained through equations (27).

2) Second script is used for matching to the RFQ

From the same set of data used in the first script the values for the RFQ (data taken from

1)) are imported (matching is explained in the chapter 3.8). Then the emittance is rotated to

match to the RFQ.

Multiple iterations of the main C++ code have been used while the scripts in Python have been

written and reused for different sets of data received from the particles outputted as part of the

main code.

2.3 ECRIS – Nanogan and Supernanogan

As part of the simulation the suitable ion source had to be chosen. For the purpose of the paper

and for the possible solution for a project within the University of Sarajevo in cooperation with

CERN named “Sarajevo LINAC Project” the source Nanogan from the company Pantechnik

has been chosen to simulate. As the company does not disclose the information of geometries

of the ion source and some of the important components of the particles multiple sources have

been used.

2.3.1 About the source – Nanogan

Nanogan is an ECR ion source, very compact and with good performance, which the magnetic

circuit is entirely made with permanent magnets both for the radial and longitudinal fields, so

the total electrical power is extremely low. The weight of the source is 11kg. Its performance

is the best in its category, allowing the production of beam currents of 20 eµA of Ar8+. Nanogan

can run with RF power up to 100W depending on the element and charge state needed. The

maximum extracting voltage is 20 kV. This ion source is working in several laboratories and

can also be installed inside electrostatic accelerators, like single-end or even Tandems terminals

(39).

28

2.3.2 About the source – Supernanogan

Supernanogan is an ECR ion source, reliable and with high performance, which the magnetic

circuit is entirely made with permanent magnets both for the radial and longitudinal fields, so

the total electrical power is extremely low. The source includes 220kg of permanent magnets

and 300kg of lead protection. Its performance is the best of its category, allowing the production

of beam currents of 200 eµA of Ar8+ and C4+. Supernanogan can run with RF power up to

600W at 14.5 GHz depending on the element and charge state needed. The maximum extracting

voltage is 30 kV. This ion source is working in several laboratories and is the reference source

for Hadron therapy, the ultimate cancer treatment method. Supernanogan can be used in any

kind of accelerators, i.e. RFQ, LINAC, Synchrotrons, Cyclotrons, etc.

Both of the sources are ECR sources and have similar components but the main difference is

the one that Supernanogan can produce multiple heavy ions while the Nanogan is mostly used

for producing ions which are lighter. For the purpose of this paper the combination of both

sources was used (40).

29

2.4 Theoretical calculations

Before presenting the simulation and the results of the simulation it is necessary to present the

theoretical calculations to have a reference to tune the simulations so the approximate results

should be reached. The results of the theoretical calculations will be used for calculating the

absolute and relative error after the presentation of simulation results.

To introduce the theoretical calculations it is necessary to review one of the previous chapters

(Beam emittance on page 10). Beam emittance is defined as the six-dimensional volume limited

by a contour of constant particle density in the (x, px, y, py, z, pz) phase space. As mentioned in

the previous chapters the emittance can be calculated from plasma temperature as well as from

the magnetic field. For this instance, the calculations from the magnetic field have been used

and the reasoning behind that is the one that the ECR sources use magnetic field to confine the

beam. Formulas that are used are mentioned previously (32) and are (for geometrical and

normalized emittance):

 𝜀𝑟𝑚𝑠 =
𝑞𝐵𝑟0

2

8𝑚𝑛𝑣𝑧
 (52)

 𝜀𝑟𝑚𝑠,𝑛 =
𝑞𝐵𝑟0

2

8𝑚𝑛𝑐
 (53)

As part of the theoretical calculations only the formula for normalized beam emittance will be

used (53) and that result will be compared with the one received from the simulations.

After listing the formulas, it is necessary to discuss the magnetic field. As it is known magnetic

field (as it is explained in the introduction) can be separated into two components axial and

radial. The one that has the most effect on the particles and their trajectory is the radial field

which can be given as BECR. This magnetic field is calculated by the following:

 𝐵𝐸𝐶𝑅 =
𝑚

𝑞
𝜔𝑅𝐹 =

𝑚

𝑞
2π𝑓 (54)

Where m is the mass of electrons, q is the charge and f is the frequency at which the source

operates on.

In this case the following parameters were used:

For mass the mass of electron is used – 𝑚 = 9.10938356 ∗ 10−31 kg

For the mass in formula for the normalized beam emittance the mass of helium nucleus is used

as – 𝑚𝑛 = 4.002602 ∗ 𝑢 = 6.6422 ∗ 10
−27 kg

For charge the charge of electron is used and multiplied by 2 since it is the case for He2+ – 𝑞 =
1.60217662 ∗ 10−19 C

For frequency the value is – 𝑓 = 10 𝐺𝐻𝑧 = 1010Hz

The value of r0 is used as the aperture of the source and the value is – 𝑟0 = 0.002 m

The speed of light is used as – 𝑐 = 299792458
m

s

30

Mass of electron is used for the magnetic field since the electrons are the particles that with

their movement as plasma create a confining magnetic field. After listing all the values using

the python script the following is calculated for magnetic field:

𝐵𝐸𝐶𝑅 = 0.357057 T

As for the emittance value of the magnetic field at the plasma chamber wall is double the

amount of the BECR, as well as the contribution of the double of amount of electron charge in

He2+ so the formula for normalized emittance shifts into:

 𝜀𝑟𝑚𝑠,𝑛 =
𝑞𝐵𝑟0

2

2𝑚𝑛𝑐
 (55)

Including the previous values in the formula (55) above the value of the normalized beam

emittance is as following:

𝜀𝑟𝑚𝑠,𝑛 = 0.05746 mm mrad

31

2.5 Parameters for matching to the RFQ

To match to the RFQ ion beam has to meet the conditions which are necessary to transport the

beam particles through the RFQ. Those conditions can be divided into longitudinal and

transverse conditions. Longitudinal parameter is energy of particles and the energy spread,

while transverse is the transverse emittance and the beam ellipse shape and orientation.

The 750 MHz RFQ (hope you describe it in the introduction) has the following matching

conditions:

- Twiss parameters (alpha and beta)

- Beam emittance (geometrical)

Parameters stated above are prone to numerical change and some of them depend on type of

the RFQ and the type of the particle.

Beam parameters are not the only conditions that have to be met. RFQ itself has a parameter

called RFQ acceptance and it is referred as a maximum emittance that a beam transport system

is able to transmit.

In conclusion the twiss parameters, beam emittance have to be tuned as beam parameters while

the beam emittance has to match to the acceptance for it to be a successful match.

In the paper the following values for beam parameters and RFQ acceptance have been used for

matching to the 750 MHz RFQ, as they could be found in “750 MHz radio frequency

quadrupole with trapezoidal vanes for carbon ion therapy” written by Vittorio Bencini,

Hermann W. Pommereneke, and others. The beam parameters are as follows (41):

Table 5: list of values of twiss parameters and beam emittance

Parameter Value

Alfa [] 0.3

Beta [mm/mrad] 0.01

Beam emittance (ε)

[pi*mm*mrad]

0.2

32

3 Results and discussion

The following chapter will introduce the step-by-step analysis of the problem for matching the

beam to the RFQ. It will consist on few subchapters which will include the discussion of key

steps which lead to the final version of the code and an explanation on what has impacted the

code with all the accompanying programs and codes used to better define the values.

3.1 Tutorial version

The program started as a code which was prewritten as a tutorial code on the IBSimu website

(reference here). The code was written for one thousand particles of Hydrogen 1+ which had

the current density of the beam of 50
A

m2
. The starting simulation space was a 2D space in a xy

plane with the values on x going from 0 to 120mm (on the plot it is given as 0.12 m as the scale

is in meters) and the values on y which are going from 0 to 50mm (on the plot it shows as 0.05m

because of the incidence previously mentioned). On the plot (Figure 5) it is visible that there

are 3 electrodes present (blocks colored in blue) which were defined with mathematical

formulas corresponding to type of the line edge is defined. The value of the voltages was -3 kV,

-14 kV and -1 kV (respectively from left to right in the plot). On the plot with the green lines

the equipotential lines have been presented. Trajectory of particles are represented by red lines

and it can be seen that the large number of particles are leaving residue on the 3rd electrode,

from the left, and it can cause damage caused by precipitate on the electrode which would

impact the electric field produced by it. In this version of the code neither one of the plots were

given as it is the case for the ones that will be presented in the following chapters (42).

Figure 5: Simulation space for the tutorial code given by the IBSimu Tutorial

33

3.2 Discussion about parameters

In the chapter (cross reference to the chapter where the code is explained) the code which

introduces the parameters to the simulation is explained but the values which it introduces are

not mentioned.

Condition on which the execution efficiency of the simulation is based on is the number of

particles. The number of particles of course has an impact on the final result but the best optimal

solution for the number of particles, which best suits optimal efficiency and it does not have a

great impact on the final result, was found to be between 5 000 and 10 000 particles. The number

of particles in simulations which were run was dependent on the amount of conditions the

simulation was executed with. The number of particles in the earlier iterations of the code were

larger while the number was reduced due to the lack of computing power in the later iterations

of the code since it did no major impact on the final results.

The values of mass and charge represent the values of which type of the beam the simulation is

based on. In the case of the simulation analyzed in this paper it is a case of a 4He2+ in the final

version of the code. The beam in that case has a mass of 4.002603 atomic units7 and a charge

of +2 elementary charge8.

Values of current density, parallel and transverse energy are dependent on the source while the

value of the start energy is dependent on the value of the plasma potential plus the type of the

source which is used. Current density is the amount of charge per unit time that flows through

a unit area of a chosen cross section. Current density is a variable which depends on the source

since it can fluctuate between some values which are tied on which ions is the source producing.

For the same source there are multiple values for ion beam density. For the Nanogan source the

values of maximum beam current are presented in the table (Table 6). (39)

Table 6: Beam intensity for various charge states given in electric µA

Ion / Q 1 2 4 6 8 9 12 14

H 1000

He 1000 100

Ar 300 140 45 20 5

Xe 10 5

Ta 10 10 5

Au 10 9 8 6 2

7 Atomic unit has a value of 1.67377 * 10-27 kg
8 Elementary charge is 1.60217 * 10-19 C

34

Parallel and transverse temperatures are values which represent the temperature of electrons in

the plasma which provide and the value of these temperatures are given in eV (electron volts).

The value of parallel temperature is in most cases (and in the case of this paper) is 0eV since it

does not impact the emittance. On the other hand, the value of transverse has a great impact on

the emittance and this value provides an initial ionization to the injected gas. The value for this

parameter is dependent on the temperature of the plasma where the value can be in the interval

between 0.4 eV and 1 eV. (43)

The plasma potential is the value which then would decrease the number of cold electrons

(which are not magnetically confined) which tend to escape more rapidly from plasma than the

ions because of their higher mobility. As a result of that a positive plasma potential builds up

to retard the escape of electrons and to accelerate the escape of the ions. It was discovered

during operation of ECR sources that the production of high charge state ions can be

substantially enhanced by adding a light support or mixing gas to the ECR plasma. There are

many parameters involved in the ECR plasma. Plasma potential is a function of the related

parameters: (44)

𝑉𝑃 = f(𝑛𝑒 , 𝑛𝑖 , 𝑛0, 𝑇𝑒 , 𝑇𝑖, 𝑚𝑖, 𝐵, 𝛺𝑤)

where:

𝑛𝑒 – electron density distribution 𝑇𝑒 – electron temperature

𝑛𝑖 – ion density distribution 𝑇𝑖 – ion temperature

𝑛0 – neutral particle density distribution 𝑚𝑖 – ion mass

𝛺𝑤 – plasma chamber configuration and wall condition 𝐵 – magnetic field of the source

Plasma potential of an ECR source presented in the simulation is 20 V while the temperature

of the electrons in the plasma is 10 eV. The starting energy is then calculated as the the plasma

charge times the value of the charge.

Confinement of the starting beam is just a geometrical preset which depends on the source. In

Nanogan the aperture at the exit of the source is at 4 mm so the starting beam confinement

should be at the minimum at 4 mm but it can go into higher values since the aperture at the exit

will confine the beam afterwards. (44)

35

3.3 Addition of electrodes

In addition to the tutorial code the problem of constructing the adequate electrodes immerged.

The tutorial code is just a starting point for the problem since it does not provide a layout and

voltage for the electrodes which would represent a layout for an ECR source while it could

represent a layout for another source which is not an ECR source since the 2 cm aperture is not

a value of aperture which is used for an ECR source. For the following reason the layout should

be built and constructed as a realistic setup already present and commissioned as a part of the

low energy particle beam accelerator. For the problem of this paper the layout of the ECR ion

sources at CNAO facility in Pavia, Italy. (45) The ECR source that the low energy transport is

used for is Supernanogan which is similar to the Nanogan source and the main difference is that

the Supernanogan can produce heavier ions (e.g. Carbon 4+) while the Nanogan source is more

used for production of lower mass ions (e.g. Helium 2+ on which the simulation will be based.

As it can be seen the difference between the two setup is that on the paper there are 4 electrodes

(body of the source and plasma electrode, puller electrode and a focusing electrode which are

used to form an electric field which then focuses the beam) while in the tutorial code there are

only 3 electrodes visible. The changes had to be done to the tutorial code but the problem

surfaced when the electrodes had to be designed as in the paper. The program Adobe Ilustrator

was used to extract the dimensions and positions of the electrodes. After aligning the electrode

borders as in (Figure 7) the measurements and coordinates were extracted to an Excel sheet and

afterwards the equations for the electrodes were extracted.

Figure 6: Desired appearance of the setup

36

Equations were written as geometrical equations with the following formulas:

- Distance between two points: 𝑑 =
𝑦1+𝑦2

2

- For a straight line: 𝑦 − 𝑦1 =
𝑦2−𝑦1

𝑥2–𝑥1
(𝑥 − 𝑥1)

- For the ellipse: 𝑏2𝑥2 + 𝑎2𝑦2 = 𝑎2𝑏2

After calculating the equations of the straight and curved lines they are inserted in the main

code within the bool command (C++ script). The simulation spaced is halved for the better

performance and better execution where the full space presented as in figure (Figure 12) will

be discussed in chapter 0. The look of the simulation space after implementing the electrodes

look as in (Figure 8).

Upon reconstructing the electrodes, the problem in adequate voltages occurred. Since the paper

on which the electrodes were based on, did not provide the values for voltages of each electrode.

Issue with the voltages got solved by providing the data from the paper: “Double einzel lens

extraction for the JYFL 14 GHz ECR ion source designed with IBSimu” (46).

Figure 7: Process of extracting the values for the electrode geometries

37

Even with the parameters where the values for potentials were:

- Body of the source – 10kV

- Puller electrode – 0V

- Focusing electrode – 15kV

- Ground electrode – 0V

It can be seen that the beam has not changed drastically so the further investigation had to be

done. After the consolation from the author of the IBSimu (Taneli Kalvas, Ph.D.) and engineer

from company Pantechnik (Arun Annaluru, Ph.D.) the following voltages have been reached

in the final version of the code:

- Body of the source – 0V

- Puller electrode – -25.50kV

- Focusing electrode – -45.0kV

- Ground electrode – -30kV.

Figure 8: Electrodes shape and potential after gathering the values

Figure 9: First version of the electrodes as depicted in the CNAO paper.

38

What is different to the electrode potential from the paper is that now the source is on 0V while

other electrodes are relative to the amount of the potential of the source. Since the source of

Nanogan is at the working voltage between 20kV and 30kV for it to be at 0V other electrodes

have to have the value of their voltage minus the working voltage of the source (e.g. if the

source is at 24kV if we reduce it down to 0 other electrodes have to be their value minus the

value of 24kV).

There is a noticeable difference between the electrodes of the tutorial simulation and the

simulation for the Nanogan source. In the final version of the code the electrodes were slightly

differed to the setup in this chapter but in the chapter (3.7) will the changes be discussed and

the reason for implementing them.

3.4 Expansion of the code

Once the electrodes were reconstructed from the paper the issue of printing out the results and

controlling the output particles emerged. Since the original code did not output any data except

the simulation are plot the original code had to be expanded.

Firstly, the part of the code dedicated to the particle output has been made which then dumped

the tracked particles coordinates (x, y and z coordinates) and their velocities (per velocity

component vx, vy, and vz) to a file for further analysis using Python.

Second addition to the code was as well an addition to the plot after the code execution. The

addition was that of an interactive menu which then had options to plot the particle distribution

in the phase space9 for either x, y or z axis. The plots consist of the points which correspond to

each of the particles which reached the desired point and their x coordinate is their position

(either x, y or z) and y coordinate is the corresponding angle. The plots received then can be

analyzed further with additional tools which are available with the program.

9
 In dynamical system theory, a phase space is a space in which all possible states of a system are represented,

with each possible state corresponding to one unique point in the phase space.

Figure 10: appearance of the pop-up menu that is the result of the code expansion

39

The pop-up menu can be used to plot the distribution of the particle beam characteristics (such

as energy, charge, mass, etc.). After choosing to plot the emittance figure (number here) can be

seen. On the figure values of Twiss parameters: alpha, beta, gamma and geometrical beam

emittance can be found. Such values can be used in further discussions and beam analysis for

the beam to proceed to further matching to the RFQ.

Additional expansions of the code are presented as the addition of the plasma potential

Addition of the plasma potential to the simulation made it more accurate. After the addition of

the plasma it had to be confined to the area where it has impact. The confinement area is the

source. Plasma is defined with two values which are:

- For plasma potential 20V

- For electron temperature (from the electron temperature paper reference here) 10eV

Figure 11: Beam emittance plot within the IBSimu program

40

3.5 Control script for calculating emittance from the extraction parameters

The result of the expansion of the code is the output file referenced in the chapter (cross-

reference for the previous chapter here). Since the IBSimu package provides only the final

values for emittance, alpha, beta and gamma and the values of the particle parameters10, for the

detailed analysis the additional script had to be made. For the purpose the custom made script

was made in Python in which all the necessary further calculations were made.

The script is written to assist in calculation of the percentage of particles which would suit the

acceptance of the RFQ using the values from the output file. Using the script, the tracking data

was sorted as every row represented a particle while the columns had the values of mass, charge,

position and velocity. In the continuation of the script the file was filtered to retain the particles

which x value was the maximum and equal to the max value of x in the simulation space.

Furthermore, the file was expanded to include:

- Values of the angle of particle trajectory with respect to direction of the beam which

was calculated with the following formula: 1000 × arctan (
𝑣𝑦

𝑣𝑥
) which value is in mrad

(milirad)

- Values of the position of the particle on the y axis in mm

As a mean to control the main simulation in the calculations of the beam parameters (alpha,

beta, gamma and beam emittance) in the script the calculation for these beam parameters was

performed from the output file. All the equations used are present in the theoretical introduction

of the paper, to be exact the chapter (number here).

The script includes the emittance plot as well which always corresponds to the one the program

plots. The reason is that both were made from the output file but the difference is that the

IBSimu is plotting internally and is automatic while the Python script needs an input (in the

version of the output file received from IBSimu) of the particles and hand written code to

operate.

The RFQ acceptance is imported to this script which uses it to calculate the percentage of the

particles that achieve the acceptance. The script is important to the simulation since the IBSimu

program is not equipped to calculate the matching while the script could be looked at as the add

on to the program where it would not work without the main program. It is possible to integrate

the script and use it in the main program and write it in C++. The issue would arise on the

optimization of the code since the main purpose of the code is to calculate the trajectory and

the simulation is already heavy and requires a lot of computation power while the integration

of the would lower the efficiency of the simulations where the program would require more

time to operate. The solution of an add-on script is a better solution since it quickens the process

of the main simulation while the lack would be only the required knowledge to write it in a

different programing language to the main program written in IBSimu package.

10 Mass, charge, coordinates and velocity

41

3.6 Optimization of beam parameters

Once the code expansion was finished, the script which analyzes the output was created and the

electrodes were constructed only parameters left to be defined are beam parameters. Since the

beam which was meant to be produced is 4He2+ the mass and the charge are known. As the

simulation is rather a one of an ECR source the beam current density is known and ion source

physics have defined the temperature (longitudinal and transverse) of the ions. To manipulate

the beam, the geometry and voltages of electrodes (body of the source, puller, plasma and

focusing electrodes) had to be changed.

3.6.1 First iteration of the code

In the first iteration of the parameters the values of voltages and the beam parameters are

presented in the table (Table 7).

Table 7: Table of beam parameters and values for electrode voltages in the first iteration of the code

Parameter Value Parameter Value

Number of particles 10 000
Body of the source

(in kV)
20

Mass (in atomic

units)
4

Puller electrode (in

kV)
-1

Charge (in values of

elementary charge)
1

Focusing electrode

(in kV)
2

Beam current

density (in
A

m2
)

80
Ground electrode (in

kV)
0

Starting energy of

the particles (in eV)
20 000

Beam start

confinement (in mm)

X axis = (0.0 – 0.0)

Parallel temperature

(in eV)
0 Y axis = (0.0 – 12)

Transverse

temperature (in eV)
1

Provided values in the table (Table 7) simulate the plot and emittance as on (Figure 12).

42

Figure 12: Plot for the simulation space (left) and beam emittance (right) received through the

simulation for the first iteration of the code

On the results from the figure (number here) the values for emittance are presented in the table

(Table 8).

Table 8: Value of the beam emittance and normalized beam emittance for the first iteration of the

simulation

Beam emittance (in mm mrad) 8.14788

Normalized emittance (in mm mrad) 0.37742

For the presented results it can be seen that the result of the simulation is not realistic. From

figure (Figure 12) on the left side the simulation space is presented and it can be seen that the

beam of particles is flat and that is not realistic which means some of the parameters from table

(Table 7) are not correct so further changes to the parameters are supposed to be made.

3.6.2 Second iteration of the code

Following the first iteration of the code the values for voltages are changed to match the

suggestions from Taneli Kalvas11 and Arun Annaluru12. To addition of the voltage changes

further changes to the beam parameters were made. Since the value from the first iteration were

not regular as they were taken from the tutorial code further investigation was required. It was

discovered that the values for some of the parameters were higher than expected and those

values were corrected. Following the further research in the Nanogan source (for which the

simulation is loosely based on) the yield of He1+ ions is negligible and for the source

commission as a laboratory equipment for further research the change to ions of He2+ was

decided. He2+ is used more for Ion beam analysis then his counterpart in He1+.

11

 Kalvas Taneli, Staff Scientist at University of Jyväskylä, Finland
12

 Research and development engineer at Pantechnik

43

The values of beam parameters are presented in the table (Table 9).

Table 9: Values for beam parameters in the second iteration of the code

Parameter Value Parameter Value

Number of particles 10 000
Body of the source

(in kV)
0

Mass (in atomic

units)
4

Puller electrode (in

kV)
-21

Charge (in values of

elementary charge)
2

Focusing electrode

(in kV)
-18

Beam current

density (in
𝐴

𝑚2
)

80
Ground electrode (in

kV)
-20

Starting energy of

the particles (in eV)
50

Beam start

confinement (in mm)

X axis = (0.0 – 0.0)

Parallel temperature

(in eV)
0 Y axis = (0.0 – 12)

Transverse

temperature (in eV)
1

Values from the table (Table 9) after the simulation present the plots seen in the figure (Figure

13).

Figure 13: Plot for the simulation space (left) and beam emittance (right) received through the

simulation for the second iteration of the code

The values of beam emittance from the second iteration of the code are presented in the table

(Table 10)

44

Table 10: Value of the beam emittance and normalized beam emittance for the second iteration of the

simulation

Beam emittance (in mm mrad) 65.4933

Normalized emittance (in mm mrad) 0.214843

From the data presented in the figure (Figure 13) and from tables (Table 10) the space of the

simulation has a more realistic look while the beam emittance has taken a non-elliptical shape

which leads that the simulation is not accurate with these parameters. As a reason to approve

the parameters is the beam emittance as well. The beam emittance provided in the second

iteration of the code is higher than expected and has to be lower for the source to have a

successful matching to the RFQ. Few more iteration are required for the simulation to be

processed by the follow-up script and for the setup to be matched to the RFQ.

3.6.3 Third iteration of the code

The beam emittance of the second iteration of the code (Figure 13) was not elliptical so the

third iteration of the code will repair this issue while trying to retain the beam parameters since

they are the theoretical values which in practice do not change. After the further review changes

to the voltages of the electrodes and the addition of the plasma potential in the simulation.

Explanation of the addition of plasma potential is in the chapter (3.4).

Values for the beam parameters and the electrode voltages of the third iteration are presented

in the table (Table 11).

Table 11: Values of the beam parameters and electrode voltages for the third iteration of the code

Parameter Value Parameter Value

Number of particles 10 000
Body of the source

(in kV)
0

Mass (in atomic

units)
4

Puller electrode (in

kV)
-26

Charge (in values of

elementary charge)
2

Focusing electrode

(in kV)
-25

Beam current

density (in
A

m2
)

80
Ground electrode (in

kV)
-30

Starting energy of

the particles (in eV)
50

Beam start

confinement (in mm)

X axis = (0.0 – 0.0)

Parallel temperature

(in eV)
0 Y axis = (0.0 – 12)

Transverse

temperature (in eV)
1

45

After simulating the beam parameters which are stated in the table (Table 11) the plots in figure

(Figure 14) have been obtained.

Figure 14: Plot for the simulation space (left) and beam emittance (right) received through the

simulation for the third iteration of the code

From the plots in figure (figure number here) the values for emittance have been acquired and

they are presented in the table (Table 12).

Table 12: Value of the beam emittance and normalized beam emittance for the third iteration of the

simulation

Beam emittance (in mm mrad) 58.483

Normalized emittance (in mm mrad) 0.22364

After the analysis of the figure (Figure 14) and the table (Table 12) it is deduced that the

simulation plot is taking a realistic shape after the third iteration. Beam emittance is still to

improve on. The beam parameters are set for a standard He2+ beam and it is on the electrode

shape to be altered further for the code to reach the final version. The beam is currently (in this

iteration) leaving the residue on the electrodes which is not acceptable since the exchange of

the electrodes would be required before the desired time. This affects the performance of the

source. In this setup of electrodes on the equipotential lines we do not see the plasma effect on

the beam which means that the geometry must be refined to benefit this effect. Further on the

simulation area was expanded a few millimeters and it proved that it has effect since the realistic

system is 0.201 m long (the extraction system based on 3 electrodes).

46

3.7 Final version of the code

Once the third iteration of the code was finished there were a couple of minor errors to be

corrected. One of those errors was the geometry of the electrodes which contributed to the lack

of plasma effects on the beam which then led to nonrealistic plots of beam emittances and to

beamlines which hit the electrodes.

The final version of the code was different to the previous iteration (the third iteration) in a way

that on the first electrode a small edge was added to contribute to having the plasma effect on

the beam. It contributed by bending the potential to be more in tune to the plasma effect on the

beam. In the figure (Figure 15) can be clearly seen that the plasma effect is present now which

was not the case in the third iteration of the code (3.6.3). The values for the voltages on these

electrodes were lowered as the source can operate on the voltages between 21 kV and 30kV.

Relative to this all the other voltages were lowered

Other difference to the third iteration is a small change in the beam parameters. Instead of the

beam current density being 80
A

m2
 it is raised to 96

A

m2
. The value of the starting energy of the

ions is changed to 10 eV instead of 50 eV while other parameters remained the same. The

change to the beam starting confinement in ymax is for the purpose of easier compiling of the

program and does not affect the outcome to the final result. The reason for that is the aperture

of the body of the source which confines the beam to 4 mm weather the beam confinement is

larger or less than the previous value. Quick note is that the value that represents the number of

particles is changed as well but this number only has an influence on compile time of the

simulation so since the input data is more hardware heavy then in the previous iteration, the

number is lowered from 10 000 to 5 000.

Table 7: Values of the beam parameters and electrode voltages for the final version of the code

Parameter Value Parameter Value

Number of particles 5 000
Body of the source

(in kV)
0

Mass (in atomic

units)
4 1st electrode (in kV) -28.5

Charge (in values of

elementary charge)
2 2nd electrode (in kV) -24.5

Beam current

density (in
𝐴

𝑚2
)

96 3rd electrode (in kV) -30

Starting energy of

the particles (in eV)
10

Beam start

confinement (in

mm)

X axis = (0.0 – 0.0)

Parallel temperature

(in eV)
0 Y axis = (0.0 – 10)

Transverse

temperature (in eV)
1

47

As a output of the simulation with the parameters from table (table number here) the simulation

space and the emittance plot are presented on figure (number here).

Figure 15: Plot for the simulation space (left) and beam emittance (right) received through the

simulation as the final version of the code

The values of geometrical and normalized beam emittance are given in the table (number here).

Table 8: Value of the beam emittance and normalized beam emittance for the final version of the code

Beam emittance (in mm mrad) 26.0448

Normalized emittance (in mm mrad) 0.0341558

Relativistic beta 0.00543

Relativistic gamma 1.0000147

The data recovered from table (Table 8) and figure (Figure 15) it can be seen that there are

many improvements to the third iteration of the code. The small addition to the first electrode

proved significantly valuable since the effect of the plasma is visible through the shape of

equipotential lines. There are few notable deficiencies which is the precipitate of particles on

the electrodes which will, in time, cause the system to perform less efficient but the solution to

this would be the exchange of the electrodes which happens after the lifetime is exceeded. This

is improved after the company which produces the source provides the full setup data since the

problem in this paper is solved while gathering data from different papers (41,45,46). The value

of normalized beam emittance that can be found in chapter (2.4) is the same order of magnitude

in correspondence to the value found in the table (Table 8). The value of the geometrical beam

emittance is within the acceptable margin of error for the type of the ECR source simulated

within the problem.

The setup presented in this final version of the code represents the best suitable option to start

the matching procedure with the RFQ. The process for matching to the RFQ will be explained

within the chapter (3.8).

48

3.8 Matching to the RFQ

Matching of to the RFQ successes the simulation presented in the chapter (3.7). The process of

matching consists of few steps.

First step is writing a MAD-X code where the defining of two solenoids which would focus the

beam. Solenoids of 0.2 m of length are used and their position is defined. The code also has to

contain the values of twiss parameters to function correctly. Output of the code are the values

of k factors (which are used afterwards to write a transfer matrix) and a file which can be used

to read out parameters such as a transfer matrix, k values, mass of the particles etc.

After defining the code used to apply solenoids to the simulation a small compilation is needed

and as an output for the values received as part of the final version of the code (3.7). For the

calculation of the plot for beam emittance the transfer matrix is used.

Transfer matrix is a final result of multiplying multiple drift matrices and transfer matrices of

both solenoids. The result for the problem discussed as combining 3 drift matrices (drift

matrices are defining the space between objects within the simulation, between the simulation

area and the first solenoid, between two solenoids and the final one between the 2nd solenoid

and the entrance to the RFQ). Drift matrices are combined with the matrices of the solenoid

which there are two for both solenoids. The transfer matrix is then calculated by multiplying

the drift matrices and solenoid matrices with each other in a reverse order (from the RFQ to the

starting area of the simulation).

Drift matrices are defined as:

 𝑀𝐷 = (

1 𝐿 0 0
0 1 0 0
0 0 1 𝐿
0 0 0 1

) (56)

where the value of L is the length in between the elements of the system. Values for L are:

- Between the simulation space and the first solenoid the value is 0.3 m

- Between the solenoids the value is 0.1 m

- Between the second solenoid and the entrance to the RFQ the value is 0.3 m

The matrices are defined as MD1, MD2 and MD3 respectively.

A Solenoid matrix can be defined as a product of two matrices which are a global focusing

matrix in both xx’ and yy’ plans and a rotation matrix. These are defined as:

 𝑀rotation = (

cos 𝑘𝐿 0 sin 𝑘𝐿 0
0 cos 𝑘𝐿 0 sin 𝑘𝐿

− sin 𝑘𝐿 0 cos 𝑘𝐿 0
0 − sin 𝑘𝐿 0 cos 𝑘𝐿

) (57)

Variables k and L are:

- k is read as an output from MAD-X

- L is the length of the solenoid

49

 𝑀focusing =

(

cos 𝑘𝐿

sin 𝑘𝐿

𝑘
0 0

−𝑘 sin 𝑘𝐿 cos 𝑘𝐿 0 0

0 0 cos 𝑘𝐿
sin 𝑘𝐿

𝑘
0 0 −𝑘 sin 𝑘𝐿 cos 𝑘𝐿)

 (58)

The solenoid matrix is calculated as:

 𝑀solenoid = 𝑀rotation ×𝑀focusing (59)

The final value of the transfer matrix is:

𝑀transfer = 𝑀𝐷3 ×𝑀solenoid2 ×𝑀𝐷2 ×𝑀solenoid1 ×𝑀𝐷3

(60)

Calculations for the transfer matrix were done by using MS Excel as it represented the most

time efficient way to calculate them. The reason behind that is that MS Excel functions provide

an easier way to exchange the values for the parameters and elements represented in the

problem.

Figure 16: Calculation of the transfer matrix done in MS Excel

After the calculation the matrix is transferred to the Python script so it can be used to transform

the original vector of position and the angle of particles (y,y’) into the new one which would

represent the rotation of the particles. The equation for the vector of the new position for an

individual particle is gathered from the equation:

 𝑉𝑒𝑐𝑡𝑜𝑟𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 × 𝑉𝑒𝑐𝑡𝑜𝑟𝑜𝑙𝑑𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (61)

The value for the vector of position and angle has to be 4x1 where the values are:

 𝑉𝑒𝑐𝑡𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (

𝑦

𝑦′
𝑧
𝑧′

) (62)

Since the simulation is symmetrical in the z and y planes the values of z and z’ are equal to the

ones of y and y’.

50

Within the Python script the values for the vector position of original particles is extracted from

the file which is the output of the IBSimu code. Since there is no argument for an angle in the

output file a new column had to be added. The process of addition is explained within chapter

(2.2.2) which for has a result of expanding the file with 2 additional sets of variables. The vector

of new position is then calculated within the script which then gives a rotated beam emittance

plot as seen on figure (Figure 17).

After rotating the particles and receiving the new emittance plot the acceptance of the RFQ is

defined. It is a ellipse which is presented on the figure (Figure 18).

Figure 18: acceptance plot for the RFQ

Figure 17: rotated beam emittance plot which is calculated within

a python script

51

The final part of the simulation would be to see if the matching to the RFQ is successful. To

verify that the two plots (Figure 17 and Figure 18) have to be overlapped and the percentage of

the particles included within the acceptance. The plot can be seen within the figure (Figure 19).

The percentage of the particles contained within the acceptance of the RFQ can be obtained by

overlapping the two ellipses. The plot seen in figure (Figure 19) is enlarged to just only the

acceptance ellipse and it can be seen on the figure (Figure 20).

The number of particles included in the acceptance ellipse of the RFQ is 71.32% of all particles

that reached the end of the trajectory.

Figure 19: overlap of the beam emittance and the acceptance

Figure 20: enlarged acceptance ellipse with the beam emittance ellipse

within

52

3.9 Future addition to the code and possible outcomes

Since the simulation and the matching for a halved setup is finished a discussion for future

addition to the code and possible outcome can be discussed.

First addition to the code would be the expansion of the space on which the simulation is taking

place. Since if the simulation areas are compared from figure (Figure 6) and the figure (Figure

15) it can be seen that the area on the figure (Figure 15) is the area halved of the original one.

The expansion is done by moving the plot space by its height upward and axially symmetrically

mapping the electrodes. Second part would be moving the source of ions and plasma values to

the new spot (which now would be the original value plus the height of the simulation space).

The new figure of the simulation space can be seen on figure (Figure 21).

The reason why this expansion is not added to the final version of the code is the emittance plot

received from IBSimu which has an error which was not managed to be debugged by the user

and the issue was forwarded to the author of the package (Kalvas Taneli).

Figure 21: simulation area after expansion of the area to most closely resemble the area of simulation

from the CNAO paper

53

The second addition would be to observe values of electrode potentials and beam parameters

and exchange them with the values of the electrode potentials and beam parameters from the

author of the setup which the simulation is based on. The values included in the final version

of the code (3.7) are correct, but they are gathered from different sources. The acquired values

would improve the percentage of particles which can be accepted to the RFQ.

The third addition would be the addition of multiple particle beams to the simulation. The real

case of ion beams generated by the source are the ones where multiple beams are generated by

the source. When having He2+ beams the source produces He1+ ions as well. The He1+ beam

would be present in the simulation and they would dissipate while entering the RFQ and only

He2+ ions would remain. The simulation, if the particles of He1+ are added, would look like as

seen on figure (Figure 22).

With both of these future additions to the code this simulation could be used to fully simulate a

source. These simulations afterwards could be used as a base for the commission of an ion

source. The ion source then would be used as a part of a system which then could be used for

multiple application ranging from ion beam analysis to creation of radioisotopes which would

be used for medical purposes.

3.10 Analysis of the parameters

From the chapter (number of the first iteration) to the chapter (number for the final iteration)

changes made are significant. From the electrode potential to some of the parameters. Few of

them would be analyzed in the following subchapter.

Figure 22: simulation if He1+ ions are added to the beam

54

The value of the electrode potential was influenced by multiple sources. Another addition which

was done and is not present at the papers which the simulation is based on is a small part

attached to the puller electrode which is just a few millimeters long and has enhanced the effects

of plasma potential within the source. Overall the electrodes were the hardest parameters to

optimize since they consist of multiple factors where both their geometries and potentials are

closely related to the focus of the beam and they had to be changed together or the results would

not have been changed.

Second parameter to be discussed is the value of current density. Since every ion beam differs

on which ion it consists. The beam, as it was previously mentioned, is a beam of 4He2+ but the

reality is that the beam is not uniform. Since to reach the ions of 4He2+ the atoms of helium have

to be ionized and for them to reach their 2nd ionization they have to go through the 1st ionization.

The result of the ionization of the gas is that in the plasma there is a mixture of 4He2+ and 4He+

ions where when the extraction process starts both are pulled towards the exit and the beam in

the extraction system is constructed of majorly 4He+ ions while the rest is of 4He2+ ions. 4He+

disperse in the extraction system while the 4He2+ stay and continue to the RFQ. The value of

96
A

m2
 is reached when the values of the current density of both helium ions combine where the

value for the 4He2+ is 16
A

m2
 while the value for 4He+ ions is 80

A

m2
. The total value is the output

from the source where it can be seen that most of the current dissipates in the extraction system.

Third parameter for analysis is starting energy of the ion beam. For the case of the simulation

of the source conducted in this paper the value is 10 eV. The value for this parameter can range

from 1 to 50 eV while the one mostly used for 4He2+ ions is 10 eV. This value is reached by

multiplying plasma potential and the charge of the beam where the plasma potential for the

source is at 20 V. This value of course as well varies from the source itself and the cold electrons

have impact on it so that is why the value is not fixed and it can be in range of multiple

electronvolts.

Electron temperature is one of the values which depends on the ionization of the beam in this

case the value is at 10 eV where it is the temperature of electrons reached in the second

ionization of the helium. This value has an impact on the plasma temperature and that itself

impacts the beam in its early stages (impacts the starting energy and transverse temperature).

The addition of this parameter with its correct value proved to be one of the biggest

contributions (with the addition of plasma potential) to the final result where it impacted the

beam particles to be matched in a greater percentage to the RFQ, while when this parameter

was not included the matching was done with less of a number of particles.

Discussion for other parameters is discussed in different subchapters and it can be summarized

as:

- The beam confinement is just a geometrical setup on where the beam starts and the value

for it has to meet at least the aperture of the source (in this case 4 mm)

- The value for transverse temperature is dependent on the plasma temperature and in

ECR sources it is in range of 0.4 eV to 1 eV and it has a strong impact on emittance

while the value of parallel temperature is 0 because it does not affect the beam itself and

has no impact on the emittance

- Number of particles is just a number which helps with the time in which the simulation

is executed. It does impact it but the values of few thousand particles is sufficient to run

the simulation with little to no variety

55

4 Conclusion

Ion source simulated in the paper (and the steps) are a theoretical calculation with data gathered

from different sources. The value of percentage of the particles which match the RFQ

acceptance is good and the setup presented within this paper can be used further in ion beam

analysis. Of course, the percentage of the particles matching to the RFQ acceptance can be

improved if the parameters of electrodes (geometries and voltages) are improved in a sense

where they would be gathered from a same source and not a combination of multiple sources.

The simulation was analyzed and constructed using multiple programming languages and

programs ranging from C++, Python, Fortran and many other, the geometries were

reconstructed using third party software (Adobe Illustrator), transfer matrix was calculated

using MS Excel, data was analyzed using Python as a programing language which presents the

best way to analyze and process data. IBSimu code was shaped differently to the original with

few custom additions. This was necessary to improve the performance and make it easy for the

data to be processed and analyzed afterward.

In conclusion the package IBSimu is excellent in simulating ion beams and simulating different

extraction systems but from the tutorial code multiple additions are necessary for the code to

have realistic beams and functions for beam analysis. Package, on the other hand, is not good

at matching to the RFQ where different scripts are used to supplement the lack of it. For this

purpose, Python, as one of the best tools for data analysis, is more than enough. Python can be

used as well to be an error checker for the package. Another small deficiency of the IBSimu

package is the electrode geometries which follow the strict rules of analytical geometry and the

data for the shape of electrodes is not easily obtained since the institutions which use the source

are not able to provide necessary information due to companies which produce the source are

keeping the data for themselves.

The final conclusion regarding the accuracy of the IBSimu simulations looking back on all

results from the chapters 3.7 and 3.8 are:

- IBSimu simulations give a very elongated ellipse, which is probably not realistic; their

ends are also folded and bended, which leads to an assumption that there are nonlinear

effects present and the values for twiss parameters (alpha and beta). Improvements to

the twiss parameters and elimination of the nonlinear effects would lead to a larger

percentage of particles accepted to the RFQ;

- Despite of that having two solenoids is enough to match the beam to RFQ

56

5 References

1. Wille K. The Physics of Particle Accelerators An Introduction. Oxford; 2000. p. 315.

2. Bryant PJ. A BRIEF HISTORY AND REVIEW OF ACCELERATORS. 1928;

3. Gurney R, Condon E. Wave mechanics and radioactive disintegration. Nature.

1928;122(3073):(Sep).

4. Cipra BA. An introduction to the Ising model. Am Math Mon. 1987;(Dec).

5. Wangler TP. An Introduction to the Physics of High Energy Accelerators.

6. Wideröe R. Some memories and dreams from the childhood. Europhys News.

1984;(15(2):9-11).

7. Paul W. Early days in the development of accelerators. In: InProc Int Symposium in

Honour of Robert R Wilson. Fermilab; 1979. p. 25–688.

8. Janes G, Levy R, Bethe H, Feld B. New type of accelerator for heavy ions. Phys Rev.

1966;(May).

9. Wolf B. Handbook of Ion Sources. Wolf B, editor. CRC Press; 1995. 544 p.

10. Thomae R, Gough R, Keller R, Leung KN, Schenkel T, Aleksandrov A, et al. Beam

measurements on the H- source and low energy beam transport system for the Spallation

Neutron Source. Rev Sci Instrum. 2002;73(5):2016.

11. Kalvas T, Tarvainen O, Ropponen T, Steczkiewicz O, Ärje J, Clark H. IBSIMU : A

three-dimensional simulation software for charged particle opticsa) IBSIMU : A three-

dimensional simulation software for charged particle optics a …. 2014;703(2010):2008–

11.

12. Heddle DWO. Electrostatic Lens Systems. Electrostatic Lens Systems. CRC Press; 2000.

13. Helmut L. Applied Charged Particle Optics. Springer; 2008. 131 p.

14. Wollnik H. Optics of charged particle. Esevier; 2012.

15. Kumar V. Understanding the focusing of charged particle beams in a solenoid magnetic

field. Am J Phys. 2009;77(8):737–41.

16. Stockli MP, Welton RF, Keller R. Self-consistent, unbiased root-mean-square emittance

analysis. Rev Sci Instrum. 2004;75(5 PART II):1646–9.

17. Edition S. Charged Particle Optics.

18. Elmaghraby E. Radiation Interaction with Matter. Radiation Synthesis of Materials and

Compounds. 2013. 403–421 p.

19. Leitner D. Ion beam properties and their diagnostics for ECR ion source injector systems.

In: 14th Beam Instrumentation Workshop. 2010.

57

20. Ed IGB. The Physics and Technology of Ion Sources Second , Revised and Extended

Edition. 2004.

21. Humphries S. Charged particle beams. Courier Corporation; 2013.

22. Humphries S, Russell S, Carlsten B, Earley L, Ferguson P. Circular-to-planar

transformations of high-perveance electron beams by asymmetric solenoid lenses. Phys

Rev Spec Top - Accel Beams. 2004;7(6):1–10.

23. Chauvin N. Space-charge effect. arXiv Prepr arXiv14107991. 2014;

24. Child CD. Discharge from hot CaO. Phys Rev (Series I). 1911;(32(5):492).

25. CERN. Accelerators [Internet]. 2020 [cited 2020 Sep 12]. Available from:

https://home.cern/science/accelerators

26. Bohm D. Minimum ionic kinetic theory for a stable sheath. In: Guthrie A, Wakerling R,

editors. Electrical, The Characteristics of Fields, Discharges in Magnetic. McGraw-Hill;

1947.

27. Chapman B, Vossel J. Glow discharge processes: sputtering and plasma etching. Phys

Today. 1981;34(7):62.

28. D IW, Instruments KA. The ion optics of low-energy ion beams. 1984;34.

29. Kalvas T, Tarvainen O, Clark H, Brinkley J, Ärje J. Application of 3D code IBSimu for

designing an H-/D- extraction system for the Texas A&M facility upgrade. In: AIP

Conference Proceedings. American Institute of Physics; 2011. p. 439–48.

30. Kuo T, Yuan D, Jayamanna K, McDonald M, Baartman R, Schmor P, et al. On the

development of a 15 mA direct current H− multicusp source. Rev Sci Instrum.

1996;67(3):1314(March).

31. Keller R, Cheng D, DiGennaro R, Gough R, Greer J, Leung K, et al. Ionsource and low-

energy beam-transport issues with the front-end systems for the Spallation Neutron

Source. Rev Sci Instrum. 2002;73.

32. Midttun, Kalvas T, Kronberger M, Lettry J, Pereira H, Schmitzer C, et al. A new

extraction system for the Linac4 H? ion source. Rev Sci Instrum. 2012;83(2).

33. Kalvas T, Welton RF, Tarvainen O, Han BX, Stockli MP. Simulation of H- ion source

extraction systems for the Spallation Neutron Source with Ion Beam Simulator. Rev Sci

Instrum. 2012;83(2).

34. Stroustrup B. C++ programming language. 1997.

35. Kuhlman D. A Python Book: Beginning Python, Advanced Python, and Python

Exercises. 2012.

36. CERN Accelerator Beam Physics Group, \relax CERN Accelerator Beam Physics

Group. MAD - Methodical Accelerator Design. 2014.

58

37. Kalvas T. IBSimu.

38. Kalvas T, Tarvainen O, Ropponen T, Steczkiewicz O, Rje J, Clark H. IBSIMU: A three-

dimensional simulation software for charged particle optics. Rev Sci Instrum.

2010;81(2).

39. Pantechnik. Nanogan. 2013.

40. Pantechnik. Supernanogan. 2013.

41. Bencini V, Pommerenke HW, Grudiev A, Lombardi AM. 750 MHz radio frequency

quadrupole with trapezoidal vanes for carbon ion therapy. Phys Rev Accel Beams.

2020;23(12).

42. Kalvas T. Vlasov2d tutorial code of IBSimu [Internet]. 2017. Available from:

http://ibsimu.sourceforge.net/vlasov2d/index.html

43. Puligundla P, Mok C. Microwave- and radio-frequency- powered cold plasma

applications for food safety and preservation [Internet]. Advances in Cold Plasma

Applications for Food Safety and Preservation. Elsevier Inc.; 2020. 309–329 p. Available

from: http://dx.doi.org/10.1016/B978-0-12-814921-8.00011-6

44. Ranjini K, Nabhiraj PY, Das SK, Mallik C, Bhandari RK. Estimation of electron

temperature in 14 . 45 GHz ECR ion source plasma by analysis of Bremsstrahlung

spectra. 2007;45(December):965–8.

45. Ciavola G, Gammino S, Celona L, Maimone F, Galatà A, Pullia M, et al.

COMMISSIONING OF THE ECR ION SOURCES AT CNAO FACILITY. :415–7.

46. Toivanen V, Kalvas T, Koivisto H, Komppula J, Tarvainen O. Double einzel lens

extraction for the JYFL 14 GHz ECR ion source designed with IBSimu. J Instrum.

2013;8(5).

59

6 Addition

6.1 IBSimu code
 #include "epot_bicgstabsolver.hpp"

#include "particledatabase.hpp"

#include "geometry.hpp"

#include "func_solid.hpp"

#include "epot_efield.hpp"

#include "meshvectorfield.hpp"

#include "ibsimu.hpp"

#include "error.hpp"

#include "particlediagplotter.hpp"

#include "geomplotter.hpp"

#include "config.h"

#ifdef GTK3

#include "gtkplotter.hpp"

#endif

// physics constants:

double constexpr mass_4He_in_u = 4.002602;

double constexpr e0 = 1.60217662e-19;

double constexpr c0 = 299792458;

using namespace std;

// puller

bool solid1(double x, double y, double z)

{

 float etx1 = 0.02355; // tilted electrode starting x; originally

: 0.02355

 float etx2 = 0.05794; // tilted electrode ending x

 float etx3 = 0.09375; // straight part; originally : 0.09375

 return((x >= etx1 - 0.001 && x <= etx1 && y >= 0.005629 && y <=

0.007216)||(x >= etx1 && x <= etx2 && y >= -0.00296 + 0.36*x && y <= -

0.00163 + 0.371*x) || (x >= etx2 && x <= etx3 && y >= 0.0178984 && y <=

0.01986574));

}

// focus electrode

bool solid2(double x, double y, double z)

{

 return((x >= 0.09525 && x <= 0.099748 && y <= 0.030692 + sqrt

(2.268e-5-0.36*pow((x-0.097367),2.0)) && y >= 0.030692 - sqrt (2.268e-5-

0.36*pow((x-0.097367),2.0))) || (x >= 0.09821 && x <= 0.1429 && y <=

0.0283104 && y >= 0.026) || (x >= 0.1410229 && x <= 0.1457854 && y <=

0.030692 + sqrt (2.268e-5 - 0.36*pow((x-0.143404165),2.0)) && y >=

0.030692 - sqrt (2.268e-5 - 0.36*pow((x-0.143404165),2.0))));

}

// ground

bool solid3(double x, double y, double z)

{

 return((x >= 0.13017 && x <= 0.1537229 && y <= 0.06826 && y >=

0.06456) || (x >= 0.12859 && x <= 0.13017 && y >= -2.33 * x +

0.36830 && y <= 0.06826) || (x >= 0.145785 && x<= 0.1537229 &&

y>= 0.0521229 && y <= 0.0645583) || (x>=0.145785 && x<=

0.1523999981 && y <= 0.0521229 && y>= -0.92 * x + 0.1862455) || (x >=

0.1537229 && x<= 0.1775354 && y >= 0.0460374 && y <= 0.0502708333) || (x

>= 0.1523999981 && x <= 0.1537229 && y >= 0.0460374 && y <=0.0521229));}

// plasma

bool solid4(double x, double y, double z)

{

 //return((x <= 0.00503 && y >= 0.01)||(x >= 0.00503 && x

<= 0.00847 && y >= 4.375 * x - 0.02000625) || (x >= 0.00847 && x <=

0.01773 && y >= 0.017056769) || (x >= 0.01773 && x <= 0.05794 && y >=

0.3653 * x + 0.01058));

60

// plasma

bool solid4(double x, double y, double z)

{

 return((x <= 0.00503 && y >= 0.01)||(x >= 0.00503 && x <= 0.02997 && y >=

1.605 * x - 0.00600625) || (x >= 0.00847 && x <= 0.01773 && y >= 0.017056769)

|| (x >= 0.01173 && x <= 0.05794 && y >= 0.3653 * x + 0.01058));

}

//all the +0.0025 or 0.0015 are newly added

void simu(int *argc, char ***argv)

{

 // size, origin, mesh size

 Geometry geom(MODE_2D, Int3D(403,151,1), Vec3D(0,0,0), 0.0005);

 Solid *s1 = new FuncSolid(solid1);

 geom.set_solid(7, s1);

 Solid *s2 = new FuncSolid(solid2);

 geom.set_solid(8, s2);

 Solid *s3 = new FuncSolid(solid3);

 geom.set_solid(9, s3);

 Solid *s4 = new FuncSolid(solid4);

 geom.set_solid(10, s4);

 float fHV=-25.5e3;

 geom.set_boundary(1,Bound(BOUND_NEUMANN, 0.0e3)); //xmin

 geom.set_boundary(2,Bound(BOUND_NEUMANN, 0.0e3));//xmax

 geom.set_boundary(3,Bound(BOUND_NEUMANN, 0.0));//ymin

 geom.set_boundary(4,Bound(BOUND_NEUMANN, 0.0));//ymax

 geom.set_boundary(7,Bound(BOUND_DIRICHLET, -23.0e3));// puller

 geom.set_boundary(8,Bound(BOUND_DIRICHLET, fHV));//focus electrode

 geom.set_boundary(9,Bound(BOUND_DIRICHLET, -24.0e3));//ground electrode

 geom.set_boundary(10,Bound(BOUND_DIRICHLET, 0.0e3));//body of the source

 geom.build_mesh();

 // NEUMANN: dEf/dx

 // DIRICHLET

 EpotBiCGSTABSolver solver(geom);

 InitialPlasma init_plasma(AXIS_X, 0.513e-3);

 //plasma potential [V]:

 double Up=20.0;

 solver.set_initial_plasma(Up, &init_plasma);

 //electron temperature in plasma

 double Te=10.0;

 EpotField epot(geom);

 MeshScalarField scharge(geom); // space-charge electric field

 MeshVectorField bfield;

 EpotEfield efield(epot);

 field_extrpl_e efldextrpl[6] = { FIELD_EXTRAPOLATE, FIELD_EXTRAPOLATE,

 FIELD_SYMMETRIC_POTENTIAL, FIELD_EXTRAPOLATE,

 FIELD_EXTRAPOLATE, FIELD_EXTRAPOLATE };

 efield.set_extrapolation(efldextrpl);

 ParticleDataBase2D pdb(geom);

 bool pmirror[6] = { false, false, true, false, false, false };

 pdb.set_mirror(pmirror);

 for(size_t i = 0; i < 20; i++) {

 if(i == 1) {

 double rhoe = pdb.get_rhosum();

 solver.set_pexp_plasma(-rhoe, Te, Up);

 }

61

 for(size_t i = 0; i < 20; i++) {

 if(i == 1) {

 double rhoe = pdb.get_rhosum();

 solver.set_pexp_plasma(-rhoe, Te, Up);

 }

 solver.solve(epot, scharge);

 efield.recalculate();

 pdb.clear();

// Helium 2+

// arguments for particle generation function:

// - No of particles,

// - beam current density [A/m2], 80 (He+), 96 (He+ and He2+)

// - particle charge [e],

// - mass [u]

// - mean energy E (eV), eg. 10 eV (plasma potential*charge, can be 1-50 eV)

(25)

// - parallel temperature [eV] Tp = 0.0 eV (0.1)

// - transverse temperature [eV] Tt = 1 eV (28) - has large impact on emittance

 pdb.add_2d_beam_with_energy(5000, 96.0, 2.0,

mass_4He_in_u,

 10.0, 0.0, 1.0,

 0.0, 0.0,

 0.0, 0.01);

 pdb.iterate_trajectories(scharge, efield, bfield);

 }

// Write output file containing all particles

 std::ofstream fileOut("particles_out.txt");

 for(size_t k = 0; k < pdb.size(); k++) {

 Particle2D &pp = pdb.particle(k);

 // Plot particle I, m, coordinates, velocities

 fileOut << std::setw(12) << pp.IQ() << " ";

 fileOut << std::setw(12) << pp.m() << " ";

 fileOut << std::setw(12) << pp.location() << " ";

 fileOut << std::setw(12) << pp.velocity() << " ";

 fileOut << "\n";

}

fileOut.close();

// calculate emittance:

 TrajectoryDiagnosticData tdata;

 std::vector<trajectory_diagnostic_e> diagnostics;

 diagnostics.push_back(DIAG_Y);

 diagnostics.push_back(DIAG_YP);

//pdb.trajectories_at_plane(tdata, AXIS_X, geom.max(0)-geom.h(), diagnostics);

 pdb.trajectories_at_plane(tdata, AXIS_X, geom.max(0),

diagnostics);

 Emittance emit(tdata(0).data(), tdata(1).data());

 // Output, append

 ofstream dout("emit.txt", ios_base::app);

 dout << emit.alpha() << " "

 << emit.beta() << " "

 << emit.epsilon() << "\n";

 dout.close();

/* GeomPlotter geomplotter(geom);

 geomplotter.set_size(750, 750);

 geomplotter.set_epot(&epot);

 geomplotter.set_particle_database(&pdb);

 geomplotter.plot_png("plot1.png");

*/

62

6.2 Python script

#ifdef GTK3

 GTKPlotter plotter(argc, argv);

 plotter.set_geometry(&geom);

 plotter.set_epot(&epot);

 plotter.set_scharge(&scharge);

 plotter.set_particledatabase(&pdb);

 plotter.new_geometry_plot_window();

 plotter.run();

#endif

}

int main(int argc, char **argv)

{

 int i;

 for(i=0;i<argc;i++) {printf("arguments in main: %s\n",argv[i]);}

 try {

 ibsimu.set_message_threshold(MSG_VERBOSE, 1);

 ibsimu.set_thread_count(2);

 simu(&argc, &argv); // with graphics

 //simu(argc, argv); // no graphics

 } catch (Error e) {

 e.print_error_message(ibsimu.message(0));

 exit(1);

 }

 return(0);

}

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np from math

import pi,atan2

%matplotlib inline

df = pd.read_csv("particles_out.txt", delim_whitespace=True, header=None)

df.columns=["iq","m","x","y","z","vx","vy","vz"]

df['tang']=[1000*atan2(vy,vx) for vy,vx in zip(df['vy'],df['vx'])] # better

df['tpos']=df["y"]*1000 # convert position to [mm]

df_filtered = df[df['x'] == 0.201]

df_filtered.head()

df.columns=["iq","m","x","y","z","vx","vy","vz"]

df['tang']=[1000*atan2(vy,vx) for vy,vx in zip(df['vy'],df['vx'])]

df['tpos']=df["y"]*1000 # convert position to [mm]

accRFQ=0.2 # [pi*mm*mrad] normalized, at 15 keV/u

betrel=0.005675 # 15 keV/u

accRFQ=accRFQ/betrel #print(accRFQ)

alphRFQ=0.3 # []

betaRFQ=0.01 # [mm/mrad]

63

 # helper functions to plot the RFQ acceptance ellipse:

calculate ellipse tilt angle

in radians

def calc_theta(a,b,g):

 #return 0.5*np.arctan(-2*a/a(b,g)b-g))

 return 0.5*atan2(-2*a,(b-g))

calculate semi-major and semi-minor axes

def calc_axes(e,a,b,g):

 h=0.5*(b+g)

 majax=np.sqrt(e/2)*(np.sqrt(h+1)+np.sqrt(h-1))

 minax=np.sqrt(e/2)*(np.sqrt(h+1)-np.sqrt(h-1))

 return majax,minax

plot the ellipse using parameteric plot

def get_ellipse(emm,alpha,beta,gamma):

 t=np.arange(0,6.293185,0.1) # returns evenly spaced values (for 0.1) within

a given interval [0-2pi].

 ang=calc_theta(alpha,beta,gamma)

 #print("ellipse tilt angle is [rad]: ",ang)

 majax,minax=calc_axes(emm,alpha,beta,gamma)

 #print('ellipse axes are: ', majax, minax)

 #print('theta is the rotation angle of the ellipse that we put in at the

begining', angdeg)

 x1=[majax*np.cos(t)*np.cos(ang)-minax*np.sin(t)*np.sin(ang)][0]

 xp1=[majax*np.cos(t)*np.sin(ang)+minax*np.sin(t)*np.cos(ang)][0]

 #plt.plot(x1,xp1,'o')

 return x1,xp1

xel,xpel=get_ellipse(accRFQ,alphRFQ,betaRFQ,gamRFQ)

mirror the particle distribution

ypos=[] # negative x,x'

yvel=[]

for y,yp in zip(df_filtered["tpos"],df_filtered["tang"]):

 ypos.append(y)

 ypos.append(-y)

 yvel.append(yp)

 yvel.append(-yp)

plt.hist2d(ypos,yvel,bins=(50,50))

plt.xlabel('transverse position [mm]')

plt.ylabel('angle [mrad]')

plt.plot(ypos,yvel,'o', label='beam')

import matplotlib.colors as mcolors

colors = [(1,0,0,c) for c in np.linspace(0,1,100)]

cmapred = mcolors.LinearSegmentedColormap.from_list('mycmap', colors, N=256

plt.hist2d(ypos,yvel, bins=50, cmap=cmapred, zorder=7

RFQ acceptance ellipse:

plt.plot(xel,xpel,'r-', label='RFQ acceptance') # axes labels

plt.xlabel('position [mm]')

plt.ylabel('angle [mrad]')

plt.grid()

plt.xlim(-17,17)

plt.ylim(-75,75)

plt.legend()

64

function:

def stemitt(x,xp,npart):

xm2=np.sum(pow(x,2))/npart - pow(np.sum(x)/npart,2

xpm2=np.sum(xp*xp)/npart - pow(np.sum(xp)/npart,2

xxpm=np.sum(x*xp)/npart - (np.sum(x)*np.sum(xp))/pow(npart,2)

#print('mixed term=',xxpm)

rmsemitt=pow(xm2*xpm2-pow(xxpm,2),0.5)

#print('emittance=',rmsemitt)

return rmsemitt

print(type(ypos))

em=stemitt(np.asarray(ypos),np.asarray(yvel),len(ypos)) print('{}

[mm*mrad]'.format(em))

npart=len(ypos)

ypos=np.asarray(ypos)

yvel=np.asarray(yvel)

beta=(np.sum(pow(ypos,2))/npart - pow(np.sum(ypos)/npart,2))/em

gama=(np.sum(pow(yvel,2))/npart - pow(np.sum(yvel)/npart,2))/em

alpha = -(np.sum(ypos*yvel)/npart - (np.sum(ypos)*np.sum(yvel))/pow(npart,2))/em

print(alpha,beta,gama)

calculate normalized emittance

for vx in zip (df_filtered["vx"]):

 a=df_filtered["vx"]

c=299792458

e=2.94879*pow(10,-5)

avgv=np.sum(a)/len(a)

relbeta=avgv/c

relgama=1/np.sqrt(1-pow((avgv/c),2))

print ('relativistic parameters =', relbeta, relgama, relbeta*relgama)

normE=relgama*relbeta*e

print ("normalized emittance = {} [mm*mrad]".format(normE))

#Transfer matrix

TransfMatrix = np.array([[-0.1506867438,0.02430629197,-

0.7994759258,0.1289582267],[-0.5661202565,-0.1363516383,-3.003578847,-

0.7234203191],[0.7994759258,-0.1289582267,-

0.1506867438,0.02430629197],[3.00357884,0.7234203191,-0.5661202565,-

0.1363516383]])

print ("matrix is")

print (TransfMatrix)

for x in zip(df_filtered["tpos"]):

 b = df_filtered["tpos"]

for y in zip (df_filtered["tang"]):

 a = df_filtered["tang"]

print (a)

print (b)

65

ypos1=[]

yang1=[]

for j in range(len(a)): posVec = [[b[j]],[a[j]],[b[j]],[a[j]]]

newPosVec = np.array

[[TransfMatrix[0,0]*b[j]+TransfMatrix[0,1]*a[j]+TransfMatrix[0,2]*b[j]+TransfMat

rix[0,3]*a[j]],[TransfMatrix[1,0]*b[j]+TransfMatrix[1,1]*a[j]+TransfMatrix[1,2]*

b[j]+TransfMatrix[1,3]*a[j]],[TransfMatrix[2,0]*b[j]+TransfMatrix[2,1]*a[j]+Tran

sfMatrix[2,2]*b[j]+TransfMatrix[2,3]*a[j]],[TransfMatrix[3,0]*b[j]+TransfMatrix[

3,1]*a[j]+TransfMatrix[3,2]*b[j]+TransfMatrix[3,3]*a[j]]])

ypos1.append

(TransfMatrix[0,0]*b[j]+TransfMatrix[0,1]*a[j]+TransfMatrix[0,2]*b[j]+Tran

sfMatrix[0,3]*a[j])

ypos1.append (-

(TransfMatrix[0,0]*b[j]+TransfMatrix[0,1]*a[j]+TransfMatrix[0,2]*b[j]+Tran

sfMatrix[0,3]*a[j]))

yang1.append

(TransfMatrix[1,0]*b[j]+TransfMatrix[1,1]*a[j]+TransfMatrix[1,2]*b[j]+Tran

sfMatrix[1,3]*a[j])

yang1.append (-

(TransfMatrix[1,0]*b[j]+TransfMatrix[1,1]*a[j]+TransfMatrix[1,2]*b[j]+Tran

sfMatrix[1,3]*a[j]))

plt.hist2d(ypos1,yang1,bins=(50,50))

plt.xlabel('after transfer matrix transverse position [mm]')

plt.ylabel('after transfer matrix angle [mrad]')

plt.plot(xel,xpel,'r-', label='RFQ acceptance')

plt.plot(ypos1,yang1, 'o')

compute percentage of the beam particles inside the acceptance ellipse

pacc=[]

aacc=[]

for x,y in zip(ypos1,yang1):

 tiltang=calc_theta(alphRFQ,betaRFQ,gamRFQ)

 a,b = calc_axes(accRFQ,alphRFQ,betaRFQ,gamRFQ)

 comp1=pow(x*np.cos(tiltang)+y*np.sin(tiltang),2)/pow(a,2)

 comp2=pow(x*np.sin(tiltang)+y*np.cos(tiltang),2)/pow(b,2)

 if comp1+comp2<1.0:

 pacc.append(x)

 aacc.append(y)

plt.plot(xel,xpel,'r-', label='RFQ acceptance')

plt.plot(pacc,aacc,'o')

print("fraction of accepted particles:",len(pacc)/len(ypos1))

