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The application of machine learning and nature-inspired optimization methods, like for

example genetic algorithms (GA) and particle swarm optimization (PSO) can be found
in various scientific/technical areas. In recent years, these approaches are finding applica-

tion in accelerator physics to a greater extent. In this paper, nature-inspired optimization

as well as the machine learning will be shortly introduced and their application to the
accelerator facility at GSI/FAIR will be presented. For the heavy-ion synchrotron SIS18
at GSI, the multi-objective GA/PSO optimization resulted in a significant improvement

of multi-turn injection performance and subsequent transmission for intense beams. An
automated injection optimization with genetic algorithms at the CRYRING@ESR ion

storage ring has been performed. The usage of machine learning for a beam diagnostic
application, where reconstruction of space-charge distorted beam profiles from ioniza-
tion profile monitors is performed, will also be shown. First results and the experience
gained will be presented.
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1. Introduction

The Facility for Antiproton and Ion Research (FAIR) will provide antiproton and

ion beams of unprecedented intensities as well as qualities to drive forefront heavy

ion and antimatter research.1 The multi-turn injection (MTI) into heavy-ion syn-

chrotron SIS18 is one of the bottlenecks for providing designed intensities for FAIR

operation. The loss-induced vacuum degradation and associated lifetime reduction

for intermediate charge state ions is one of the key intensity limiting factors for

SIS18.2 Beam loss during injection can trigger the pressure bump instability. An

optimized injection can relax the dynamic vacuum problem, but is also crucial

to reach the synchrotron intensity limit by a large multiplication of the injected

current.3

The complexity of the FAIR facility demands a high level of automation to keep

anticipated manpower requirements within acceptable levels.4 An example of com-

plexity is the High Energy Beam Transport System of FAIR which forms a complex

system connecting among other things seven storage rings and experiment caves

and has a total length of 2350 meters.5 An automatized machine based optimiza-

tion would improve the time for optimization and control of HEBT.

In the frame of the Swedish in-kind contribution to the FAIR project, the stor-

age ring CRYRING@ESR is planned to be used for experiments with low-energy

ions and protons. Figure 1 shows the CRYRING@ESR and is local injector. Over

the second transfer line the CRYRING@ESR can also receive beams form the exper-

imental storage ring ESR. The ring is already installed in the existing GSI target

hall and commissioning has started in 2015.6–8 Since CRYRING@ESR has its own

local injector, it can be used as stand-alone for testing novel technical developments

like automatized configuration of beam line devices. A semi-automatized optimiza-

tion has been already preformed at the CRYRING in Sweden.9

For the optimization and control of synchrotrons, the knowledge of beam param-

eters is a key ingredient. Ionization profile monitors play an important role in

nondestructive measurements of the transverse beam profile. They make use of

Fig. 1. CRYRING@ESR injection from the local injector has been online optimized with an

evolutionary algorithm.
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residual gas ionization by the particle beam and collect the ionization products

via appropriate guiding fields. However, for the foreseen intensities at heavy-ion

synchrotron SIS100 for some beams, a profile distortion is expected to be visible.

Here, the application of machine learning allows the reconstruction of the beam

profiles with simulation supported training.

2. Nature-Inspired Optimization

Nature-inspired optimization algorithms often perform well approximating solu-

tions to all types of problems because they ideally do not make any assumption

about the underlying fitness landscape. The fitness determines the quality of the

solution and determines the probability of its survival for the next optimization

step. The fitness is evaluated by an objective function, a simulation code or a real

running system. In many real-life problems, multi-quantities have to be optimized.

In addition, these quantities can be contradicting and there is more than one equally

valid solution. These solutions form a so-called Pareto front (PA front) in the solu-

tion space, see Fig. 2.10 A solution is Pareto optimal if it is not dominated by any

other solution. By using a nondominated selection algorithm, one tries to find solu-

tions near the optimal Pareto set.

2.1. Evolutionary algorithms

An evolutionary algorithm (EA) is inspired by biological evolution, such as repro-

duction, mutation, recombination, and selection. Genetic algorithms (GA) is the

most popular type of EA. In GA terminology, a solution vector is called an indivi-

dual and represents a set of variables; one variable is a gene. A group of individuals

form a population, the following child populations are counted in generations. The

first population is created randomly. The crossover operator exchanges variables

A 

B 

D 

C 

Pareto 
front 

Imagined 
best solution 

Fig. 2. The Pareto front in the solution space. The solutions A and D are located near the Pareto

front and are nondominated, while solutions B and C are either dominated by solutions A or D.
The solutions B and C do not dominate.
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between two individuals — the parents — to discover with their offspring promising

areas in the solution space (exploration). For the optimization within a promising

area, the mutation operator changes randomly the characteristics of individuals on

the gene level (exploitation). Reproduction of individuals for the next generation

involves selection. During optimization, the most promising individuals are chosen

to create the next generation. By allowing individuals with poor fitness to take

part in the creation process the population is prevented to be dominated by a sin-

gle individual. The most popular techniques for a single-objective optimization are

proportional selection, ranking and tournament selection.10,11

For a multi-objective genetic optimization, there are many different algorithms

available. One of them is the (µ+ λ)-algorithms. In the (µ+ λ)-algorithms as first

step the individual fitness of µ-individuals are evaluated. µ is the population size

and λ the offsprings size. Second, the evolutionary loop begins by producing λ <

µ-offsprings from the population through crossover and mutation. The offsprings

are then evaluated and the next generations population is selected from both the

offspring’s and the current population. Finally, when a given number of generations

has been evaluated, the algorithm returns the final population including the best

solution.13

2.2. Particle swarm optimization

The initial inspiration for the Particle Swarm Optimization (PSO) came from the

“graceful but unpredictable choreography of a bird flock” and is an example of

alternative algorithms. The key to the swarm success lies in social influence and

learning. Each individual’s behavior is influenced by its own personal experience

and the social standard .11 Within a swarm, each individual refers to a point in the

variable space xi. It is updated by adding a velocity vi depending on the personal

experience C1 and the socially swarm influence C2. The “nostalgia” in the individual

tends to return to a place it encountered in the past that best fulfilled the objectives

reflected by the personal best P l
i . Simultaneously, the individuals seek to attain

publicized knowledge or social norms, reflected by the best position ever for the

entire swarm P g. The movements of the swarm are guided by improved positions,

which are updated during the optimization over:

xi(t+ 1) = xi(t) + vi(t+ 1) , (1a)

vi(t+ 1) = wvi(t) + r1C1

(
P l
i − xi

)
+ r2C2(P g − xi) . (1b)

Including in addition stochastic elements r1, r2 in the algorithm allows to search

widely and hopefully finding a satisfactory solution. PSO has shown faster conver-

gence than GA optimization.11

3. Injection Optimization

SIS18 (Fig. 3) will serve as a booster for SIS100 in the FAIR facility to provide ion

beams of unprecedented intensities and qualities. An optimized interface between
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Fig. 3. The heavy-ion synchrotron SIS18 and its injectors.

injector linacs and synchrotron is mandatory to achieve high intensities. The new

FAIR proton linac (pLINAC) will provide the high intensity primary proton beam

for the production of antiprotons. The existing GSI heavy ion linac (UNILAC) is

able to deliver world record uranium ion beam intensities for injection into the

SIS18, but it is not suitable for FAIR operation. Therefore, an upgrade program

is planned to replace the post-stripper section.12 An evolutionary algorithm-based

optimization of the multi-turn injection (MTI) of the SIS18 has been performed to

define the interface parameters for UNILAC and pLINAC. The goal of the opti-

mization is to stack the beamlets injected from the injector in the horizontal phase

space until the synchrotron intensity limit is reached. Thereby, injection losses on

the septum or acceptance have to be minimized to prevent a synchrotron perfor-

mance reduction to due loss induced vacuum degradation.3 If η characterizes the

ratio between lost and injected particles, the gain factor (e.g. multiplication factor

of the injected current) follows to

m = n(1 − η) , (2)

where n is the ratio between injection and revolution time. For loss-free injection η

is zero and the gain factor m is equal to the number of injected turns n.

However, the required MTI brilliance should be in a reachable value frame for

the injector linac. As MTI has to fulfill Liouville’s theorem, four bumper magnets

create a time variable closed orbit bump such that the injection septum deflects the

next incoming beamlet into available horizontal phase space close to the formerly

injected beamlets. For effective adaptation to the free phase space, for instance, an

exponential bump reduction can be chosen.

During the nature-inspired optimization, the parameters on which the MTI

depends are altered in consideration of the limitations in technical and physical
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Fig. 4. Snapshot of a MTI simulation with loss. The vertical line indicates the septum and dashed

line the acceptance.

conditions to find an excellent MTI performance:
minimize η(n, εx, I0, xc, x

′
c,M, x, x′, τ, Qx) ,

maximize m(n, εx, I0, xc, x
′
c,M, x, x′, τ, Qx) ,

maximize εx(n, εx, I0, xc, x
′
c,M, x, x′, τ, Qx) .

(3)

The MTI performance depends on injector emittance εx and current I0, position

x and angular of the incoming beam x′, the closed orbit at the septum xc, x
′
c,

horizontal tune Qx, miss-match of the incoming beam M and the orbit bump

reduction τ . This parameter has been varied by evolutionary algorithms to find a

injection with low loss, large gain factor and large emittance.

For the optimization the Distributed Evolutionary Algorithms in Python

(DEAP)13 together with tracking code pyORBIT — the Python implementation of

ORBIT (Objective Ring Beam Injection and Tracking) code — has been used. The

SIS18 MTI model has been implemented in pyORBIT and was carefully validated

against experiments.14–16 Figure 4 shows a snapshot of a MTI simulation with loss

in normalized coordinates. The loss areas — inner and outside of the septum as

well as the acceptance — are visible. The inner beamlets lost particles at septum

earlier during the injection process and therefore not overlap. The injected beams

are spirally arranged. The first injected beams are sitting in the center of the spi-

ral next due to the closed orbit indicated by the black dotted. Figure 5 illustrates

the evolution of the injection loss obtained from the GA for different numbers of

injected turns. The GA finds a better set of parameters than the previous simula-

tion studies (indicated by the dashed lines15). The fact that a longer injection time

leads to higher losses also holds for the GA optimization if the available acceptance

is filled. However, especially in these cases GA discovers a much better solution.

The dependence of the gain factor on the injection loss is of particular interest due

to the vacuum degradation problem. In order to define the relationship between
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Fig. 5. The evolution of loss for injected emittance of 7 mm · mrad. GA found a much better

injection parameter setting for a low loss injection than the previous simulation studies (dashed
lines).
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Fig. 6. The PA front for gain factor and MTI loss. GA found a much better PA front than the
previous studies.

both, the gain factor has been included as an optimization objective, i.e. to find a

2D Pareto front of both. Figure 6 shows that multi-objectives genetic algorithms

(MOGA) finds a much better set of parameters for an improved MTI performance

than the previous simulation studies.15 The influence of space charge on the MTI

performance optimization with MOGA is significant even if the discovered PA fronts

are similar. The discovered MTI parameters are different with space charge.

For the layout of the injector upgrade and the new proton injector is crucial

to known the injection dependence on emittance. The demands on the injector

could be relaxed if a sufficient MTI performance with a large injection emittance

can be discovered. Previous MTI optimization studies15,17 clearly demonstrate that

the horizontal emittance of the incoming beam has a significant impact on MTI

performance. The smaller the injected emittance is, the better the MTI performance

gets, which is contradicting to relaxation of the injector demands. A reduction of

the horizontal emittance can be achieved e.g. by horizontal collimation17 or by

1942019-7
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Fig. 7. The 3D Pareto front for a simultaneously GA optimization of gain factor, loss and emit-

tance. On the right axes the require injector current is shown to reach the space charge limit in
the SIS18.

a round-to-flat transformation.16 Figure 7 shows in accordance with MTI model

and previous studies the trade-off between the objectives over a wide range of

parameter variations, which can be summarized as follows: no loss means small

injected emittance and low gain factor; a high gain factor implies small emittance

with medium loss; and large emittance means very large loss and small gain factors.

This trade-off is a direct consequence of Liouville’s theorem. The obtained results

for single and double objective optimization are located also on the 3D PA front.

Optimization with multi-objective particle swarm (MOPSA) shown similar result

with fast convergence. A 3D Pareto front has been generated for proton injector

is also shown in Fig. 8.18 The outcome of this optimization study and heuristic

analysis of the MTI demonstrate that a low-loss injection for several emittance over

many turns for various proton currents could be achieved. Three case with brilliance

of 4, 5 and 6 mA/(mm mrad) has been marked in Fig. 8. With each brilliance, the

Fig. 8. Proton linac MTI performance plot for the SIS18 synchrotron.

1942019-8

In
t. 

J.
 M

od
. P

hy
s.

 A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/0

9/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 9, 2019 19:57 IJMPA S0217751X19420193 page 9

2nd Reading

Application of nature-inspired optimization algorithms and machine learning

space charge limit in SIS18 can be reached, but the higher plinac brilliance allow a

lower loss injection.

4. Online Injection Optimization

At the GSI facility, accelerator setup and readjustment — like the multi-turn

injection optimization — is typically done manually and is very time-consuming.

With the FAIR project, the complexity of the facility increases furthermore and

for efficiency reasons, it is recommended to establish a high level of automation.

Modern Accelerator Control Systems allow a fast access to both, accelerator set-

tings and beam diagnostics data. This provides the opportunity to implement evo-

lutionary algorithms for automated adjustment. An end-user application exploiting

the genetic algorithm framework Jenetics19 to optimize unknown beamline settings

through the Java-based FAIR control system has been implemented.20 Jenetics is an

end-user ready software library implementing an evolutionary algorithm written in

modern day Java. Therefore the choice to use Jenetics was obvious although faster

algorithm are known.11 The end-user application has been carefully tested with the

local injector of the CRYRING@ESR. The tests were performed using a 40 keV

deuterium beam from the local ion source. The ion source produced an ion beam

with a total intensity between 300–800 µA. Almost 90% of this mixture was D+
2 , the

remaining 10% was dominated by D+. The genetic optimizer could find the more

intense D+
2 mass peak detected within a broad parameter range of the mass sepa-

ration magnet. The performance in terms of transmission and time was comparable

Fig. 9. (Color online) CRYRING@ESR injection. The items emphasized by color were controlled

by the genetic algorithm.
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to what the standard mass scan revealed. After this successful test, the multi-turn

injection of the CRYRING@ESR from the local injector has been optimized online

with a genetic algorithm with the aim to maximize the stored beam current. The

relative beam current has been measured with the longitudinal Schottky diagnos-

tics in the CRYRING@ESR. The Jenetics algorithm independently controlled 10

parameters (see Fig. 9): the deflection angle of the merging dipole magnet, focusing

strengths of two quadrupole magnets and strengths of three steerer in the transfer

line as well as the deflection angles of the magnetic septum and two electrostatic

septa, and the closed orbit defined by the ring dipoles. The result of the successful

evolutionary algorithm optimization performance is presented in Fig. 10. Shown are

two cases of converged genetic scans for the recombination probability of 0.5 and

0.8. The population size was 50 and the offspring fraction 0.5. The tournament size

of 15 has been chosen rather large to reach a fast convergence. For large tourna-

ment size, weak individuals have less chance of being selected. The first population

is created randomly forming a range around 10–15% of known good values (e.g.

from earlier manual settings or beam optics calculations). The performance of the
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Fig. 10. Converged genetic scan driving ten parameters for two different recombination proba-

bility. The goal of the optimization has been to maximize the CRYRING@ESR MTI performance.
The scans reached the final value after four generations and reached previous good transmission

after 89 (upper scan) and 97 minutes (below scan). For each optimization step an averaging over

ten measurements has been performed.
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ion source, especially unstable plasma conditions play a crucial role, as it introduces

nondeterministic transmission fluctuations which cannot be coped with by the algo-

rithm without further measures. Therefore for each genetic scan step an average of

over ten measurements has been performed. Both scans reached previously achieved

transmission after about 1.5 hours optimization time. At present, the performance

speed is limited by the FAIR control system. Hence, removing performance bottle-

necks in the FAIR control system code stack would be a key to fully enable this

method’s power.

5. Machine Learning

A principal characteristic of Machine Leaning (ML) is to implicitly deduce a set of

rules from given data, mapping specific input to output, relieving the user from this

tedious task. As such ML is especially suited for problems whose solutions require

either a lot of manual fine-tuning or involve long lists of (potentially unknown)

rules. Relevant for the presented problem is the latter case, where supervised

machine learning consisting of regression models is used to predict continuous vari-

ables from the given data. Supervised ML covers many different algorithms with

varying complexity, from linear approximations like Linear Regression (LR) up to

“biologically inspired” Artificial Neural Networks (ANN).21

5.1. Linear regression

One of the simplest estimators is the Linear Regressor. Linear regression is a linear

approach modeling the relationship between the scalar dependent variable and one

or more explanatory variables. In linear regression, the relationship is modeled

using linear predictor functions whose unknown model parameters are estimated

from the data. The least squares approach is often used for fitting linear regression

models. This model has the advantage of being very simple, and is usually a great

start when testing a Machine Learning problem. Furthermore, the predictions of

this model are usually very fast, as the complexity of the regression is linear.21

5.2. Artificial neural networks

Artificial neural networks (ANN) are computing systems vaguely inspired by the

biological neural networks found in animal brains. The most basic form of ANN

typically utilized in supervised learning problems is a fully-connected feed-forward

Multi-Layer Perceptron (MLP). It is a specific ANN architecture which is repre-

sented by consecutive layers of nodes where all nodes of two consecutive layers are

connected to each other. Each node sums all its weighted inputs and transforms

the result using an activation function. The activation function should be nonlinear

in order to represent nonlinearities in the data and it must be differentiable in

order to comply with the fitting procedure. Weights are usually randomly initial-

ized and then iteratively updated during the fitting procedure in order to minimize

the selected loss function.
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6. IPM Profile Reconstruction

The principle of IPMs is as follows: the primary beam ionizes the residual gas and

the ionized particles (ions or electrons) are extracted via electric fields, sometimes

in conjunction with magnetic fields to confine the movement of ionized particles in

the plane transverse to the electric field.22 In the ideal case, the ionized particles

were moving on straight paths towards the detector and the profile of the extracted

particles would then reflect a one-dimensional projection of the transverse profile

of the primary beam. The electromagnetic fields of the primary beam can however

affect the trajectory of particle movement towards the detector, resulting in a deflec-

tion with respect to their original position, see Fig. 11. As a consequence, the

measured beam profile can be significantly deformed compared to the actual beam

distribution. Due to the complex nature of the corresponding profile transformation,

a machine learning-based approach assisted by accurate simulation models of the

IPM including beam space-charge effects was performed.

The Virtual-IPM simulation tool was used for simulating the movement of elec-

trons inside the IPM region for a typical LHC case,23 where the beam electric field

leads to major distortion. A total of 21 021 profiles were simulated, with beam

parameters randomly sampled from the relevant parameter region (enclosing the

region for typical beam parameters). The varied beam parameters are bunch width,

bunch height, bunch length and bunch intensity. The simulated profiles were then

binned corresponding to the resolution of an acquisition system based on hybrid-

pixel detector,24 resulting in 98 bins per profile. Together with the bunch length

and the bunch intensity, this data were used as an input to various regression mod-

els. An additional preparation step involved centering and scaling each of the input

features to have zero mean and unit standard deviation. In a first attempt, the

original beam width, in form of the Gaussian profile standard deviation, was used

as the target output. Even the simple linear regression model showed very promis-

ing results for this setup.23 In a subsequent study, a more complex artificial neural

network (ANN) was used to reconstruct the complete beam profile shapes as shown

Fig. 11. In the ideal case the ionized particles would move on straight lines towards the detector.

However the electromagnetic field of the beam can influence the particle movement as indicated.
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Fig. 12. Simulation of profile distortion due to space-charge using Virtual-IPM together with the

ANN corrected profile. The simulated profile is represented by a generalized Gaussian distribution

with exponent β = 3.

in Fig. 12.25 The ANN consists of two fully connected hidden layers with 88 nodes

each, using tanh activation, and a fully connected output layer using linear acti-

vation which resembles the reconstructed beam profile. The input layer consists

of 100 nodes, including 98 profile bins as well as the the bunch length and bunch

intensity. Adam optimizer with learning rate 1× 10−4 was used for fitting together

with mean-squared error loss. Fitting converged after about 30 epochs with batch

size of 32 samples. Interesting to note is that, though training was performed only

with Gaussian profiles, the fitted ANN manages to reconstruct non-Gaussian beam

shapes such as generalized Gaussian or Q-Gaussian shapes to a satisfactory degree

as well, as depicted in Fig. 12.

7. Conclusion and Outlook

A fast beam dynamics simulation model has been developed and used together

with a multi-objective genetic algorithm to optimize the multi-turn injection into

SIS18. A loss-free or low-loss injection for several emittance over many turns were

identified. Space charge results in a similar PA front, but with different injection

settings. With the optimized multi-turn injection a range of injector brilliance could

be defined. This crucial information gives more flexibility for the layout of the SIS18

injectors.

An automated online optimization of multi-turn injection into the storage ring

CRYRING@ESR has been presented. After 1.5 h of optimization time, best previous

transmission could be reached. The nature-inspired optimization has potential to

reduce the manpower requirements and variations of quality performance due to

the manual procedure. Looking forward, the algorithm shall be applied to SIS18.
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A novel method for resolving IPM profile distortion under the influence of mag-

netic guiding fields based on machine learning has been presented. The first inves-

tigations, using simulated data, yield promising results. Next steps include estima-

tion of influence of error sources on predictions, optimization of model selection and

application of the method to measured data. The method has a potential to extend

usability and reduce cost of IPMs for high brightness beams. The application of

machine learning to time-domain signals like the longitudinal Schottky signals is

under investigation.
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