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Abstract
Transmutex SA is developing an accelerator-driven sys-

tem (ADS) designed to generate clean energy while reducing
the lifetime of radioactive waste. Such a subcritical reac-
tor concept requires high reliability and a high degree of
accelerator automation to ensure operational effectiveness.

To address these demands, a machine learning (ML)
methodology was developed and experimentally validated
for automatic beam control in cyclotrons. This work reports
the first practical demonstration of machine-learning-based
beam control in a high power cyclotron, representing a sig-
nificant step for this class of accelerators.

The validation experiments were performed on the injec-
tor ring of the High Intensity Proton Accelerator (HIPA)
at the Paul Scherrer Institute (PSI), whose design closely
matches the injector concept developed by Transmutex. Key
challenges were addressed, including the identification of
suitable observables and actuators, adapting the ML model
to the accelerator response dynamics, and integrating ML-
based control with existing feedback loops. The approach
reliably aligned the beam with the reference trajectory, im-
proving extraction efficiency while minimizing losses.

Over an extensive 12-day operational test campaign, re-
markably long in the context of real-time ML experiments,
the model demonstrated robust performance across a range
of operational scenarios, including varying beam currents
and different turn numbers.

These results show that machine learning can enhance op-
erational efficiency, reduce operator workload, and increase
automation in cyclotron-driven systems.

INTRODUCTION AND MOTIVATION
The operation of Accelerator-Driven Systems (ADS) re-

quires accelerators to be tuned with high stability, repro-
ducibility, and efficiency. Traditional manual approaches,
although effective in research environments, cannot meet
these industrial demands.

Machine learning (ML) offers a promising path forward.
By enabling automated, data-driven tuning, ML has the
potential to simplify operational control, reduce reliance on
expert operators, increase reliability, and improve efficiency
of accelerator operation.

∗ Work supported by Paul Scherrer Institute.
† malek@transmutex.com

At Transmutex, these ideas are being developed within
the framework of the START (Subcritical Transmutation by
Accelerated Reliable Technology) system and particularly its
cyclotron design. Given the architectural similarity between
the START cyclotron design and the HIPA accelerator com-
plex at the Paul Scherrer Institute (PSI), the Injector 2 at PSI
serves as an ideal experimental platform. PSI granted twelve
days of dedicated beam time, offering a unique opportunity
to validate ML-based beam control under realistic operating
conditions.

EXPERIMENTAL SETUP
HIPA Injector 2 Overview

Injector 2 is a four-sector cyclotron designed to accelerate
protons from an injection energy of 870 keV to a final energy
of 72 MeV. Its main components include four large sector
magnets (SM1–SM4), two double-gap RF resonators (CI1
and CI3), and two recently installed single-gap resonators
(CI2 and CI4). Extraction is performed by the septum mag-
net (AXA), which deflects the last orbit toward the extraction
channel. The beam is then bent by the next dipole (AXB)
into the transfer line where final beam current is measured
by current transformer (MXC1). Finally the beam is stopped
by a dedicated beam dump (BX2). A schematic layout is
shown in Fig. 1.

Figure 1: Schematic layout of Injector 2 and its main com-
ponents.
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Sector Magnets and Trim Coils
Each sector magnet is equipped with:

• A pair of main coils (AIHS) providing the primary
magnetic field,

• Nine pairs of trim coils (TI3-TI11), symmetrically
placed above and below the median plane, used for
local orbit correction and optimization of extraction
conditions.

In addition SM1 and SM3 magnets have another pairs of
coils (TIA/TIB and TI2) at their pole tips for the first orbits
fine-tuning.

A representative 3D view of SM1 is shown in Fig. 2.

Figure 2: Sector magnet SM1 with phase measurement de-
vices, main and trim coils.

RF Acceleration System
Beam acceleration is provided by four RF resonators. CI1,

the first double-gap resonator, is particularly critical since it
determines the initial turn trajectory and remains fixed dur-
ing tuning. CI3, another double-gap resonator, and the newly
added single-gap resonators CI2 and CI4 increase energy
gain and operational flexibility. Together, they determine
energy per turn, beam phase stability, and radial trajectory.

Beam Phase Monitoring
Eight phase measurement probes (MIF1–MIF8) are in-

stalled along the radius of SM1 (see Fig. 2). These devices
measure the beam phase turn by turn, providing an indirect
but highly sensitive diagnostic of the beam trajectory.

Loss Monitoring
Extraction losses are monitored using:

• Ionization chambers MII7 and MXI1,

• The KXAI collimator set attached to AXA septum.

These devices provide location- and magnitude-resolved loss
monitoring, ensuring both safe and efficient operation.

INTERACTION WITH INJECTOR 2
The experimental interface to Injector 2 relies on the

EPICS (Experimental Physics and Industrial Control Sys-
tem) framework, the standard control protocol at the PSI
HIPA facility. The Python-based PyEPICS library was em-
ployed to provide direct access to EPICS process variables
(PVs) for reading diagnostics and setting machine actuators.

All control commands were executed from a dedicated
Linux server within a protected PSI subnet, ensuring secure
and real-time communication with the accelerator. Two
types of PVs were relevant: “IST” channels, reporting
measured values, and “SOL” channels, representing the re-
quested set values. While IST readings may exhibit noise or
calibration offsets, SOL values more reliably reflect the com-
manded machine state. For this reason, SOL channels were
applied for controllable parameters such as coil currents and
resonator voltages, whereas IST channels were reserved for
diagnostics such as temperatures or phase probes.

This configuration provided a consistent and stable rep-
resentation of the accelerator state, enabling reliable data
acquisition and safe actuation during ML-driven tuning ex-
periments.

TUNING STRATEGY AND CAMPAIGN
OVERVIEW

To ensure safe deployment of machine learning on Injector
2, tuning was carried out at a beam current of 20 µA. This
level was chosen because it balances measurement quality
with operational safety: stable phase readings, low beam
power, small beam size allowing wider action space, and
meaningful loss monitor signals.

Two actuator classes were identified for ML control.

• High-impact actuators:

1. AIHS (main coils current) – sets the central mag-
netic field and determines the radial trajectory,
directly affecting the extraction position.

2. CI3V (resonator 3 voltage) – governs the energy
gain per turn and thereby influences beam phase
and extraction location.

• Fine-tuning actuators:
The trim coils on the sector magnets (TI1A/B,
TI2–TI11). While their effect is more localized, they
are indispensable for precision shaping of the magnetic
field and achieving optimal trajectory control.

Operational boundaries for AIHS and CI3V were empiri-
cally scanned to map safe versus interlock regions. Central
reference values were then chosen within these ranges to
serve as targets for ML-based fine-tuning.

Experimental Campaign Overview
The experimental campaign was designed to evaluate ML-

based tuning across a representative set of operating scenar-
ios. Five configurations were tested, each associated with
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a specific turn number, which was adjusted by controlling
the peak voltages of resonators 2 and 4. The corresponding
settings are summarised in Table 1. These configurations
represent the following operational regimes:

• Nominal operation with all four resonators active (Stage
4),

• Reduced operation with three resonators (Stages 0-2),

• Degraded mode with only two resonators (Stage 3).

Table 1: Resonators Reference Configuration per Experi-
mental Stage

Resonators setup, [kVp]
Stage Turn N Res1 Res2 Res3 Res4

0 72 430 429 451 0
1 73 430 401 449 0
2 74 430 371 448 0
3 89 430 0 449 0
4 60 430 428 448 428

Each day of the campaign followed a repeatable cycle:

1. Setup Phase (morning): Operators configured Injector
2 for the target turn number, optimized the beam at
reference current (∼2 mA), measured beam profiles,
and defined the ML action space.

2. Tuning Phase (daytime): ML agents trained at low cur-
rent (∼20 𝜇A).

3. Run Phase (evening/night): Agents were left in au-
tonomous control overnight to evaluate robustness and
stability.

4. High-Power Test (final stage only): A full day of ML
control at elevated current to test performance under
demanding conditions.

The full campaign schedule is presented in Figure 3.

Figure 3: Phase breakdown of the Injector 2 cyclotron ex-
periment over the 12-day campaign.

HISTORICAL DATA ANALYSIS AND
FEATURE ENGINEERING

Historical data was used to formulate the ML task and
pre-train models before deploying them on the real machine.
It provided a safe and rich basis for identifying relevant
features, defining actionable spaces, and ensuring the ML
agent was exposed to realistic system dynamics without risk
to the accelerator.

Data was retrieved from the PSI archiving system and
resampled to a fixed 200 ms interval by forward-filling the
latest values, ensuring synchronised time series across all
channels.

Only machine states corresponding to the resonator config-
urations used during the planned experiments were retained.
Notably, full operation with four resonators could not be
included, as the fourth resonator was only installed at the
end of 2024.

Preprocessing Pipeline
Preprocessing ensured that the dataset was clean, stable,

and physically meaningful by applying filters for beam sta-
bility, physical validity, outliers, balancing across periods,
and scaling to a uniform range.

Feature Selection and Importance
Beyond the predefined actionable features and target vari-

ables, feature engineering focused on aggregating redundant
signals such as temperatures and identifying a concise set
of additional inputs relevant for ML training.

Correlation analysis confirmed that resonator voltages and
main coil current strongly influence MIF phases, while trim
coils provide finer local corrections. Based on expert input
and exploratory models, two parameters-CI3V and AIHS-
were assigned higher importance, as they dominantly control
global beam behaviour. Among outputs, downstream MIFs
closer to extraction were given greater weight, reflecting
their operational criticality.

After filtering and balancing, the final dataset contained
approximately 27 million uniformly sampled points, equiva-
lent to over 60 days of Injector 2 operation. This structured
dataset formed the foundation for simulator pre-training,
surrogate model construction, and ultimately the safe inte-
gration of ML into Injector 2 tuning.

ADAPTING ACCELERATOR PHYSICS
FOR ML INTEGRATION

The main machine learning method applied was a model-
free reinforcement learning (RL) algorithm, Twin Delayed
Deep Deterministic Policy Gradient (TD3) [1]. It was se-
lected for its robustness in continuous control tasks and
deployed through a pipeline that combined simulation-based
pretraining, physics-informed reward shaping, and real-time
interlock handling.

To ensure robustness in case RL convergence was unstable
or too slow, Bayesian Optimization (BO) was implemented
as a backup method.
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Reward Shaping
A domain-informed reward function was created to cap-

ture accelerator physics priorities and operational safety. It
combined spatially resolved phase deviations, beam loss
behaviour, actuator usage, and interlock risk, aligning the
agent’s training objectives with operator practices. Can-
didate reward designs were tested in a BMAD-based [2]
simulation of Injector 2 beam dynamics before deployment.

A central element was the weighted root-mean-square
(RMS) phase error at the eight radial probes (MIF1–MIF8),
with progressively larger weights assigned downstream near
extraction. The error is defined as:

𝜀phase =

[ 8∑︁
𝑖=1

𝑤𝑖

(
𝜑𝑖 − 𝜑ref

𝑖

)2
]1/2

, (1)

where 𝜑𝑖 is the measured phase at probe 𝑖, 𝜑ref
𝑖

the refer-
ence phase, and 𝑤𝑖 the weight emphasising importance near
extraction.

Phase and beam-loss penalties were scaled using hyper-
bolic tangent functions:

𝑅beam = − 1
2

[
tanh

( 𝜀phase

10

)
+ tanh

(
Δ𝐼loss

30

)]
. (2)

Trim-coil usage was penalised to discourage excessive
local corrections:

𝑃trim = −𝜆 1
𝑁

𝑁∑︁
𝑗=1

|𝐼 𝑗 |, (3)

where 𝐼 𝑗 is the unnormalised current applied to trim coil 𝑗 ,
𝑁 = 12 is the number of coils, and 𝜆 a scaling factor.

The final reward is:

𝑅 = 𝑅beam + 𝑃trim, (4)

with an additional large negative penalty in case of interlock
events (beam current drop > 20% below nominal).

Interlock Handling
A two-layer interlock mechanism was integrated in par-

allel with the HIPA protections to enable safe autonomous
exploration. Interlocks were triggered when:

• phase signals (MIF1–MIF8) became invalid or out of
range,

• beam-loss diagnostics (KXAI, MII7, MXI1) exceeded
thresholds or returned invalid values, or

• the beam current readings MXC1 deviated by more
than ±20% from nominal.

The response protocol distinguished recoverable from
persistent events: a first interlock caused the system to roll
back to the last best-known action with a small perturbation;
a second consecutive interlock within 15 seconds forced the

environment into safe mode, halting ML actions until MXC1
stabilised within ±20% for at least 40 seconds.

All interlock events were logged with timestamp, type
(single/double), and cause (MIF, losses, MXC1), enabling
later analysis of fault conditions and refinement of the safe
action space.

ML DEPLOYMENT
The RL deployment on Injector 2 was formulated with

an action space of 14 normalized variables (12 trim coils,
the AIHS main coil, and the CI3V resonator voltage) and an
observation space consisting of beam phases (MIF1–MIF8),
beam losses (MII7 and MXI1), beam current (MXC1), turn
number, and selected environmental metrics such as magnet
and air temperatures. The agent’s objective was to match
the measured beam phases to a predefined reference profile
while minimizing beam losses and penalizing excessive trim
coil usage. All quantities were normalized to the range
[−1, 1]. Figure 4 [3] illustrates the RL paradigm applied
to Injector 2, where correctors define the action space and
diagnostics form the observation space.

Figure 4: The RL paradigm applied to cyclotron tuning.

To enable safe and efficient training, two complementary
simulation environments were developed. A physics-based
environment, implemented with BMAD tracking simula-
tions, was used to validate convergence properties of the
RL algorithm, tune the scaling of parameters, and explore
reward formulations. A data-driven environment, based on
a surrogate model trained on historical Injector 2 data, was
applied for pretraining and to reduce the need for online
training. Together, these environments enabled the safe de-
sign of reward functions, shortened experimental learning
cycles, and ensured robustness of the deployed agent.

RESULTS
Each selected turn, corresponding to a distinct resonator

configuration, was treated as an independent tuning task.
Performance was assessed using three indicators: the initial
and final episode reward, the number of steps required to
reach a satisfactory state, and the frequency of interlocks as
a measure of operational safety.

The main metrics were defined as follows:
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Table 2: Summary of RL Agent Training Performance Across Turns (Convergence is Defined as Sustaining <10 Steps per
Episode)

Turn Resonators Pretraining Convergence Avg. Final Interlocks
Active (timesteps / time) Reward (total / after convergence)

72 3 (R1,R2,R3) No 535 / ∼4 h −0.06 21 / 3
73 3 (R1,R2,R3) Yes 291 / ∼2 h 20 m −0.06 12 / 0
74 3 (R1,R2,R3) Yes 1117 / ∼5 h 50 m −0.06 51 / 3
89 2 (R1,R3) Yes 114 / ∼52 m −0.055 0 / 0
60 4 (R1,R2,R3,R4) No 217 / ∼2 h 3 m −0.06 4 / 1

• Initial reward: machine state before the agent’s correc-
tion.

• Final reward: state after the agent’s correction.

• Convergence reward threshold: 𝑅 > −0.08.

• Convergence: any episode solved in <10 steps, sus-
tained thereafter.

Table 2 summarises the performance across all training
stages. Pretraining improved convergence in certain cases,
but didn’t perform well when the surrogate state diverged
from the actual machine conditions.

Turn 72 - First Deployment From Scratch
The agent exhibited a rapid reduction of episode length,

converging in fewer than 60 episodes. The final reward
improved from approximately −0.7 to better than −0.05.
After convergence, phases MIF7 and MIF8 were aligned
within ±1◦ of the reference, losses were suppressed well
below alarm thresholds, and trim-coil usage was reduced.
Interlocks appeared only in early episodes and disappeared
after convergence. The learning dynamics and MIF8 phase
alignment are shown in Fig. 5 and Fig. 6, respectively.

Figure 5: Learning curve and reward for turn 72.

Beam losses and coil efficiency improved markedly during
training. As shown in Fig. 7, beam losses decreased by

Figure 6: Phase alignment (MIF8) for turn 72.

Figure 7: Beam loss suppression and trim coil efficiency for
turn 72.

nearly two orders of magnitude, reaching levels far below
the 30 nA warning threshold. At the same time, the mean
absolute trim-coil currents were reduced, demonstrating that
the agent converged to efficient control strategies requiring
only minimal corrective action.
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Figure 8: Learning curve and reward for turn 73 comparison:
pretrained (top) vs. from scratch (bottom).

Turn 73 - Deployment With Surrogate Pretraining
Relative to Turn 72, convergence was faster, with final

rewards stabilising near −0.05. Phase alignment accuracy
remained within ±1◦, losses stayed below thresholds, and
interlocks were eliminated after early episodes. An ablation
comparison indicated that the pretrained policy reached sta-
ble high reward within a few episodes, whereas training from
scratch showed larger variance and slower convergence. The
learning curve comparison of both approaches is presented
in Fig. 8.

During training at Turn 73, the agent consistently sup-
pressed beam losses, which remained well below the
10–30 nA warning threshold after convergence. The average
absolute trim-coil usage also decreased, indicating that sta-
ble beam conditions were maintained with less corrective
effort compared to the initial episodes.

Turn 74 - Transfer From Turn 73
When transferring the pretrained actor from Turn 73, adap-

tation required about 50 episodes owing to smaller turn sep-
aration. This run had the longest convergence time among
all turns. Final phases remained within ±1.5◦ and inter-

locks disappeared after initial episodes. Initial beam losses
occasionally exceeded 10 nA, reflecting the higher sensi-
tivity of this configuration. However, the agent adapted
rapidly, driving losses below 1 nA once convergence was
reached. Simultaneously, the mean trim-coil usage steadily
decreased, confirming that efficient and stable beam trans-
port was achieved under more demanding conditions.

Turn 89 - Most Degraded Configuration
Despite the most degraded configuration, convergence

was the fastest: only 114 timesteps from scratch. Final
phases were aligned within ±1.5◦, and beam losses de-
creased by nearly two orders of magnitude while trim-coil
usage stabilised. No interlocks were observed. This may
reflect reduced action space of the model for this particu-
lar turn number. Beam losses were initially close to 10 nA.
As training progressed, losses fell by nearly two orders of
magnitude. The mean trim-coil currents also stabilised at
moderate values, indicating that the agent identified a com-
pact set of efficient corrections sufficient to maintain clean
extraction without excessive actuator usage.

Contrary to expectations, surrogate-based pretraining de-
graded performance. The pretrained agent failed to reach
the −0.08 reward threshold consistently and showed large
fluctuations. This outcome indicates that, in this regime,
pretraining introduced a detrimental bias, underlining the
need for close alignment between surrogate data and real
machine dynamics.

Turn 60 - Nominal Configuration (All Resonators
On)

In the nominal configuration, convergence was achieved
in fewer than 20 episodes. Final phases were within ±1.5◦ of
the reference, with stable low losses and minimal interlocks.
The beam losses decreased steadily throughout training and
remained well below operational thresholds after conver-
gence. Trim-coil usage was consistently low, highlighting
that the agent benefited from the larger turn separation to
maintain beam quality with minimal corrective intervention.

Key Observations
RL model achieved reproducible tuning with interlocks

confined to early exploration, learned policies operated in
safe regions. The value of pretraining was turn-dependent-
beneficial when the surrogate distribution matched machine
conditions (e.g., Turn 73), and detrimental under mismatch
(e.g., Turn 89). Policies generally required adaptation across
turns, indicating the need for turn-specific or multi-turn
training.

CONCLUSION AND FUTURE WORK
This work presents the first successful deployment of re-

inforcement learning for real-time tuning of a high-intensity
cyclotron, using the Injector 2 machine at PSI as an experi-
mental platform. Over the course of two weeks, a TD3-based
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RL agent was trained and tested to optimize trim coil cur-
rents and cavity voltages based on beam phase measurements
and loss signals. The results demonstrate that the agent can
reliably learn to minimize phase error and beam losses while
respecting machine safety constraints, showing performance
comparable to manual expert tuning in several operating
conditions.

Key contributions include the development of a real-
time Gym-compatible control environment interfaced with
EPICS, the use of machine-learning-compatible reward func-
tions informed by physics and operational safety, and the
successful management of beam interlocks and dynamic
feedback signals during learning.

These outcomes provide a solid foundation for extending
ML-based control to more complex and higher-power ac-
celerator systems. In particular, future work will focus on
the staged deployment of this approach across the full HIPA
accelerator chain. This effort aims to not only improve tun-
ing speed and reliability at HIPA, but also to play a key role
in the accelerated commissioning of new cyclotron-based
systems, such as Transmutex, as well as future high-intensity
beamline configurations, including HIMB.
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