

M. I. Besana, E. Hohmann, M. Sapinski, J. Snuverink, D. Werthmüller :: Paul Scherrer Institute

INVESTIGATION OF LONG RADIAL PROBE ACTIVATION IN THE PSI MAIN RING CYCLOTRON

23rd International Conference on Cyclotrons and their Applications, 07/12/2022, Beijing, China

- Main Ring Cyclotron at the HIPA facility
- The Long Radial Probe (RRL) and the measured residual dose hot spot
- Monte Carlo simulations
- Spectra measurements
- Simulations/measurements comparison

 most probable cause of dose hot spot
- Summary

The High Intensity Proton Accelerator (HIPA)

 Cyclotron facility at PSI →
 590 MeV proton beam with current up to 2.4 mA

 Three acceleration steps:
 – Final acceleration in the large 8-sector Ring Cyclotron

Long Radial Probe (RRL)

- Measures the beam profile of all (approx. 180) orbits
- Done by moving φ=30µm carbon fibers through the radius of the machine (2 to 4.5 m) and registering secondary electrons
- Wire is streched between two arms of a fork
- The arms move synchronously along supporting structures which limit the machine aperture

Long Radial Probe (RRL)

- After the first month of Operation a hotspot was detected (>1mSv/h)
- Hotspot position correspond to beam energy 150 MeV < E < 180 MeV
- Measurement with Al2O3:C dosimeters inserted into gap between supporting structures revealed that upper structure is 4x more activated than bottom

Activation Simulations Strategy

Established procedure for activation calculations at PSI

=

coupling of the transport code **MCNP** and the nuclide inventory code **FISPACT**

MCNP simulations:

particles are transported from the source points to the regions of interest

FISPACT inventory calculations:

time-dependent growth and decay of all relevant radionuclides at any time instance

Activation Simulations Strategy

Established procedure for activation calculations at PSI

coupling of the transport code **MCNP** and the nuclide inventory code **FISPACT**

MCNP simulations:

particles are transported from the source points to the regions of interest

FISPACT inventory calculations:

time-dependent growth and decay of all relevant radionuclides at any time instance

Results:

- nuclide inventory
- expected activity for each nuclide
- residual dose
- spectrum and flux rate of the emitted gamma rays at different locations and different time instances

RRL Model in MCNP

- The RRL device is modeled as 2 blocks Aluminum-Magnesium alloy
 - 92% Aluminum
 - 4.9% Magnesium
 - 1% Manganese
 - 0.4% Silicon & Iron

- 0.25% Chromium & Zinc
- 0.1% Titanium
- 0.1% Copper
- + trace elements

- ∆y = 4 cm
- 11.75 cm in the beam direction (z)
- 0.5 cm in the vertical direction (y)
- 1 m in the radial direction (x)

- Beam losses at the RRL not known → assumptions for the simulations:
 - proton beam moving along z-axis, impacting on the RRL upper part
 - 12 simulations with different beam energies:

10 MeV	140 MeV
20 MeV	200 MeV
40 MeV	300 MeV
60 MeV	400 MeV
80 MeV	500 MeV
100 MeV	590 MeV

signal [µA]

MCNP Results: 80 MeV Beam

Proton fluence [cm⁻²/primary]

Neutron fluence [cm⁻²/primary]

FISPACT Calculations

- Irradiation history:
 - 19 days irradiation
 - 36 hours of cooling \rightarrow hot spot identified
 - 29 hours of cooling
 - 25 days irradiation
 - 12 hours cooling \rightarrow spectra measurement

- Highest activation predicted where the beam impacts [cell 100]
 - E_{beam} < 60 MeV: large contribution to the residual dose from V-48, Co-56 and Mn-52
 - $E_{beam} \ge 60$ MeV: >75% of the dose from Na-22 and Na-24
 - $E_{beam} \ge 80$ MeV: >80% from Na-22 and Na-24 \rightarrow dominated by Na-24

Gamma Spectroscopy (G-Spec)

Goals

- ightarrow Determine nuclide contributions in activated area
- ightarrow Estimate proton beam energy

Measurement

- ELSE Nuclear B-RAD: LaBr₃ handheld spectrometer
- Energy resolution: 3.3% (FWHM) at 662 keV

G-Spec: Simulation of detector spectra

Detector simulation

- Simplistic Geant4 model
- Radioactive decays of key nuclides
- Deposited energy folded with detector resolution
- Obtain spectral distributions of key nuclides $s'_i(E)$

 \rightarrow Key nuclides identified from MCNP/FISPACT calculation

$$\rightarrow$$
 Fit ansatz: $S(E) = \sum_{Nuclide \ i} c_i \cdot s'_i(E)$

Key nuclide results

Nuclide	T _{1/2}	c _i [%]
Na-22	2.6 y	24.6
Na-24	15.0 h	60.0
V-48	16.0 d	2.6
Mn-52	5.6 d	6.9
Be-7	53.2 d	0.9
Cr-51	27.7 d	0.3
Co-56	77.2 d	2.3
Ga-66	9.5 h	2.2
Ga-67	3.3 d	0.3

G-Spec: Simulated nuclide contributions

- Characteristic gamma energy distributions for different proton energies
- Example: Region [700, 1000] keV for 40 and 140 MeV proton beam energies

40 MeV

140 MeV

PAUL SCHERRER INSTITUT

Cause of the Hot Spot

- Simulations measurements comparison → energy of lost protons = 80 MeV
- Proton energy at the position of the hot spot 150 MeV < E < 180 MeV

Most probable cause of dose hot spot = protons scattered on the upstream collimator

Activation hot spot in the RRL investigated with measurements and Monte Carlo simulations

- Estimated proton energy is 80 MeV
 - activation from protons scattering at the collimator
- Most of the activation comes from relatively fast decaying radioisotopes (Na-24, T_{1/2} = 15 hours)
 - the residual dose drops quickly during shutdowns

Activation hot spot in the RRL investigated with measurements and Monte Carlo simulations

- Estimated proton energy is 80 MeV
 - activation from protons scattering at the collimator
- Most of the activation comes from relatively fast decaying radioisotopes (Na-24, T_{1/2} = 15 hours)
 - the residual dose drops quickly during shutdowns

Thanks for your attention

Wir schaffen Wissen – heute für morgen

My thanks go to

- L. Bossin,
- R. Dölling
- M. Hauenstein
- S. Lindner
- D. Reggiani
- M. Rohrer
- E. Yukihara
- PSI operator team

Activation Simulations Strategy

Coupling of MCNP6.2 Monte Carlo simulations with nuclide inventory code FISPACT

Inputs for MCNP:

- model of the geometry
 - small cells to study the activation at different positions
- material composition
- source term
- physics models and data libraries

MCNP simulation 1:

particles (protons, neutrons, photons, pions, ...) are transported from the loss points to the regions of interest

MCNP output:

- neutron fluxes (E< 20 MeV)
- residual nuclei production rates calculated for or each cell

Activation script

FISPACT calculations:

For each cell and at each time step different quantities are calculated:

- nuclide inventory
- relative contribution of the different nuclides to activity and residual dose
- spectrum and flux rate of the emitted gamma rays

Inputs for FISPACT:

- Spectra and
 - production rates from MCNP
- Irradiation history

• Residual dose map at the time of the first measurement for beam energy of 80 MeV:

- the dose value depends on assumptions on
 - beam distribution
 - lost current = 1 nA

Long Term Activation

- Most of activation from short living Na-24

 the residual dose drops quickly
- Time evolution of residual dose rate in 10 years of operation:
 - when RRL device always intercepting the beam
 - when RRL device irradiated only 2 days per month

• Ratio ($Dose_{In}/Dose_{Out}$) after 10 hors of cooling time is ~4.5 – motorization of the probe in the next winter shutdown