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Abstract
Measured IPM profiles can be significantly distorted due

to displacement of residual ions or electrons by interac-
tion with beam fields for high brightness or high energy
beams [1–6]. It is thus difficult to deduce the characteristics
of the actual beam profile from the measurements. Artifi-
cial neural network with multilayer perceptron (ANN-MLP)
architecture is applied to reconstruct the actual beam pro-
file from the measurement data. The MLP is trained using
Virtual-IPM simulation program [7] developed under the
IPMSim collaboration [8]. The first results are presented in
this contribution.

INTRODUCTION
Ionization Profile Monitors (IPM) are used for non-

destructive transverse beam profile measurements at many
accelerator facilities. The principle of operation is the fol-
lowing; the primary beam ionizes the residual gas and the
ionized particles (ions or electrons) are extracted via electric
fields and sometimes in conjunction with magnetic fields
to confine the movement of ionized particles in the plane
transverse to the electric field. The profile of the extracted
particles reflects the transverse profile of the primary beam
with the assumption that ionized particles are created at
rest and the effect of induced fields by the primary beam
on ionized particles can be neglected. The choice between
ions or electrons for profile reconstruction is based on the
requirement for the speed of device operation and potential
influence of beam space charge.
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Figure 1: Operating principle of the IPM.

Figure 1 shows the typical components present in an IPM
where both the electric and magnetic fields are utilized to
confine the ionized particles [9]. The support electrodes/rods
between the top and bottom electrodes are used to reduce
the fringe fields and improve field homogeneity. The field

homogeneity is important in order to avoid any distortion
in the measured profile and therefore static EM simulations
for the full geometry are usually performed. IPMs are often
used for non-destructive measurements in low pressure con-
ditions such as storage rings and hence they usually have to
be equipped with a high amplification multi-channel plate
(MCP) for obtaining sufficient signal to noise ratio. The
output of MCPs are connected to data acquisition system
directly or via phosphor screens and optical system. Figure 2
shows the image of the horizontal IPM formerly installed
at LHC relevant to the discussions in this paper [4]. The
dipole magnet has been moved in order to make the IPM
chamber visible. In the next section, we will discuss the dis-
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Figure 2: IPM installation at LHC. The dipole magnet (or-
ange) has been shifted, revealing the IPM chamber.

tortion in measured IPM profiles due to beam space charge
and discuss previous efforts on correcting or reducing the
distortion. Following that, the simulation tool and the beam
and device parameters used to train the artificial ANN-MLP
are discussed. Finally, the ANN-MLP parameters, training
and validation are presented and the results are summarized.

SPACE CHARGE EFFECTS ON IPM
PROFILE

IPM profile distortion due to beam fields depends on a
variety of parameters such as device geometry, beam proper-
ties, extracted particle types (ions or electrons) and if IPM
uses only electric field or also magnetic field. Initial IPM
developments were focused around devices utilizing only
electric fields. The distortion of IPM profiles has long been
observed and the first attempt tomake a simulation-based cor-
rection was by Thern [1] at AGS. Calculation of actual beam
profile width from measured profile as a function of applied
electric field and bunch population for coasting and bunched
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beams was found. Further modifications were made to the
Thern analytical model and were experimentally applied at
FNAL [2]. Such analytical models made assumptions con-
cerning the beam profile shape and predictions diverged for
dense beams. A numerical approach was attempted at CEA
Saclay during development of LIPAc IPMs, where very high
space charge is expected [3]. In that correction procedure,
first simulations were used to map the actual profile with the
measured profile and the mapping was stored in matrices
for a range of actual beam profiles modelled as generalized
Gaussian distribution and for a range of beam currents. A
fast iterative procedure was implemented to utilize these
matrices for profile reconstruction experimentally. Practical
limitations of this approach was that error in reconstructed
profile was dependent on the size or coarseness of the sim-
ulation grid, and further reduction of grid size increased
the number of reconstruction matrices significantly due to
curse of dimensionality. Alternative approach for dealing
with profile distortion is to use magnetic fields to confine the
generated ionized particles around the point of generation.
However, in addition to being expensive, required magnetic
field strengths are prohibitory for extremely dense beams as
discussed below for our target case. First major distortion for
an IPM with magnetic fields was seen for LHC IPMs at high
energies, where the beam profile was significantly broader
compared to wire scanner measurements [4]. First solution
envisaged to solve the issue was to raise the magnetic fields
in the IPM to 1 T [5]. This field strength should be viewed
in perspective of the strength of LHC main dipoles which
is 8.5 T at top energies and is considered impractical. Fol-
lowing that, correction methods such as quartile and sieve
methodwere contemplates to reconstruct the beam profile [6]
but such attempts were either impractical or unsuccessful.
Recently reliable IPM simulation tools has been devel-

oped as joint effort between several labs [8]. Availability
of reliable description of IPM system including the profile
distorting effects such as space charge and initial velocity
distribution of ionized particles transforms the problem of
IPM profile correction into a "supervised learning" problem.
In a supervised learning problem, the input and output of
an unknown system are provided and the system is approxi-
mated with a variety of machine learning algorithms [10].
We have chosen the multi-layer perceptron architecture of
artificial neural network (ANN-MLP) as a first approach to
reconstruct actual beam profile from the measured distorted
profile. We have also simplified the problem by assuming
Gaussian primary beams for first tests presented here, how-
ever these are not limitations of the method itself and can
be extended to arbitrary profiles.

VIRTUAL-IPM AND SIMULATION DATA
DETAILS

The Virtual-IPM simulation program has been used in
order to generate beam profiles for LHC parameters. Table
1 shows the parameters which have been used for the simu-
lations. σx, σy, σl and the bunch population Np have been

Figure 3: Simulation of profile distortion due to space charge
using Virtual IPM.

varied to cover the relevant operational region. The simula-
tion used a Gaussian bunch shape and an analytical solution
for the electric field of a Gaussian bunch in two dimensions,
neglecting the longitudinal field component. This is justified
because the bunch is highly relativistic and is longitudinal
size is significantly larger than transverse size. The initial
velocities of electrons were sampled from the Voitkiv double
differential cross section [11] for a Hydrogen target. Each
case simulated 1 × 106 particles whose final positions were
grouped into profiles with 100 µm bin size.

Table 1: Parameters Used for the Simulation. σx, σy, σl and
the Bunch Population Have Been Varied within the Specified
Intervals.

Particle type Protons
Energy/u 6.5 TeV
Bunch population Np 1.1 × 1011 to 1.7 × 1011
Bunch length σl (4σ) 0.9 ns to 1.2 ns
Bunch width σx (1σ) 0.29mm to 0.37mm
Bunch height σy (1σ) 0.4mm to 0.6mm
Electrode distance 85mm
Applied voltage 4 kV
Magnetic field 0.2 T

One million particles were used in each simulation pro-
viding rather smooth profiles. The bin size is 0.1mm and
Gaussian point spread function with σ = 0.125 mm was
used to represent the effect of optical acquisition system in
the LHC IPM system. Figure 3 shows the actual primary
beam profile, the distorted profile due to space charge and
the profile read at the end of the acquisition system after
application of point spread function of the optics. The input
parameters to simulation were Np = 1.7 × 1011, σl = 0.9 ns,
σx = 0.29 mm, and σy = 0.4 mm . There is a 20% increase
in the second central moment of the measured profile (with
PSF) with respect to actual (initial) profile.
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MULTI-LAYER PERCEPTRON
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Figure 4: Schematic showing the architecture of the ANN-
multilayer perceptron.

Figure 4 shows the single layer MLP, where each of the
nodes in the hidden and output layer sums all the inputs and
transforms them using a non-linear "activation function" g.
The activation function can be any differentiable non-linear
function. Typically used activation functions are "sigmoid"
and "tanh". A multilayer perceptron with at least one hidden
layer is known to be a universal approximator [12] and can
be shown to represent any function with sufficient number
of nodes. For the given training inputs x and outputs y, the
hidden function is approximated by,

oi = g

( M∑
j=1

Wji · g

( N∑
k=1

Wk j · xk + bhj

)
+ boi

)
(1)

Weights are randomly initialized and iteratively updated in
order to minimize the selected loss function,

E =
L∑
i=1
(yi − oi)2 (2)

A commonly used loss function is mean square error, and
the gradient of the loss function with respect to network
weights and biases are calculated using gradient descent
method at each step and back propagated to the weights in
previous layers. This full procedure is referred to as back-
propagation. There are several variants for calculating the
gradients during backpropagation [10].

Figure 5 shows the process of generating the training and
validation data and its usage in the training of the ANN-MLP.
The training data is used to optimize the weights and biases
of each node in the ANN-MLP to approximate the function
f ′ with Eq. 1 and validation data is used to check if the
approximated/learned function generalizes to intermittent
space within the training grid.

The training ANN-MLP is performed with three distinct
parameters, measured profile (100 points in each profile),

Physical process f
(Virtual-IPM)

Np
σx,a
σy,a
σl

Measured profile

σx,p Np
σl

Inverse process f ′

(ANN-MLP)

Figure 5: Physical process modelled by Virtual-IPM and the
inverse process approximated by ANN-MLP.

particle number Np (1 point) and bunch length σl (1 point) 
as inputs forming an array of 102 points for each training 
sample while the output is actual width denoted by σx,a to 
differentiate from predicted width σx, p. σy,a is not used for 
the training process since in any experimental usage, it will 
not be available as an input to the trained network for 
pre-diction of σx, p. 375 training samples were generated 
with a parameter scan in Np, σx,a and σy,a (5 parameters 
each) and σl (3 parameters). Table 1 shows the parameter 
range over which training data was generated. Validation 
data was generated at a spacing 1 %, 25 % and 50 % off 
the training data sites in each parameter space forming 
372 validation samples. In addition to that 0.5 % Gaussian 
white noise (rel-ative to the maximum value in each 
parameter space) was added to the profiles to depict 
ADC/camera noise on the measured profile as well as 
measurement uncertainty on Np and σl. Tensorflow [13] 
library with Keras [14] interface was used to define and 
train the ANN-MLP. We have utilized two hidden layers of 
60 and 30 nodes each and 1 output node in our MLP 
architecture. The activation function used is "tanh" and 
"adam" optimizer is selected for calculation of gradient 
of loss function with respect to MLP parameters. Training 
was performed in batch learning mode in batches of 4 and 
200 epoches were performed. One complete training took 
less than a minute on a standard PC.

RESULTS AND DISCUSSION
Figure 6 shows the reconstructed beam width for the vali-

dation data by the trained ANN-MLP plotted against actual
(initial) beam width. The training and validation grids are
marked. Though the variation of parameters are performed
in the four-dimensional parameter space, only the grid for
parameter σx is indicated in the plot. Figure 7 shows the
histogram of the percentage error of beam σx prediction,
and a bias and variance of less than 1% was obtained.

Robustness
The influence of measurement uncertainties on the artifi-

cial neural network training and prediction was also studied.
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Figure 6: Prediction of actual profile width from distorted
measured profile using an ANN-MLP.

Figure 7: Histogram showing the percentage prediction error
of the approximated function by the ANN-MLP.

Gaussian white noise was added to each channel on the ANN
input for both training and validation data in the range of
σnoise = 0.5% to 10% relative to the maximum value to
that parameter. For each set of noisy training data, the ANN
training was performed 10 times and the bias and variance
of prediction error was plotted against the added noise as
shown in Fig. 8. A linear trend in seen in the increase of
prediction error variance and bias hovers around zero. The
error bar on each point denotes the variation and bias during
these 10 independent runs of the training. Typical measure-
ment uncertainties are expected to lie between 0.5-2 % in
experimental scenarios.

SUMMARY
The reconstruction of distorted profiles for Gaussian

beams were performed using artificial neural networks and
reconstruction errors below 1% were obtained even with
the inclusion of measurement uncertainties. At this point,
no good experimental data exists for the discussed case and
tests with experimental data are foreseen in near future. Fur-
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Figure 8: Evolution of bias and std. deviation of predictions
with respect to noise in training and validation data.

ther, other machine learning algorithms for prediction like
support vector machines will be explored and alternative in-
strument based training and online reconstruction of initial
width from distorted profiles will be attempted.
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