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Abstract

AMS Electromagnetic Calorimeter (ECAL) will provide measurement of
the energy of electrons and photons in cosmic rays. The acceptance of the
ECAL is determined by its active area. Here we present analysis of Monte
Carlo and testbeam data where we perform a transverse leakage correction
of the energy deposited. The correction is done independently in each layer
of the Calorimeter. The method allows to recover energy which leaks from
ECAL in the peripheral region. Efficient correction for the transverse leakage
will improve the current value of the active area.

*mail: mariusz.sapinski@cern.ch



Contents

1 Introduction 3
2 Monte Carlo studies 4
2.1 Samples . . . . .. e 4
2.2 Methodology . . . . . . . . . ... 4
2.3 Energy versus distance . . . . . .. .. ..o L oo )
2.4 Parametrization of correction coefficient . . . . ... ... ... ... 8
2.5 Energy correction . . . . . ... ..o o 10
2.6 Non-zero incident angle . . . . . . . . ... . Lo oL 12
3 Testbeam data 18
3.1 Electrons, 10 GeV . . . . . . . . .. ... 20
3.2 Electrons, 50 GeV . . . . . . . .. 20
3.3 Electrons, 120 GeV . . . . . . ..o 22
4 Summary and Conclusions 23



1 Introduction

The AMS Electromagnetic Calorimeter (ECAL) [2] will provide precise measure-
ments of energy of electrons and photons. It is made of lead and a scintillator mate-
rial mounted in a SPACAL structure with a total thickness of 16 radiation lengths.
The external dimensions of the ECAL are: 65.8 x 65.8 x 16.65 cm. The signal
read-out is performed with the use of photomultipliers (PM). Each PM contains four
anodes which correspond to 4 pixels. In total there are 72 x 72 x 18 readout
channels.

The ECAL is made of 9 superlayers. Every superlayer is divided into 2 layers.
Each layer is made of pixels with 9 mm height and 9 mm width. Five superlayers
collect signals from the fibers along y-direction and another four along x-direction.
Superlayers are located alternately, ie. superlayers number 0, 2, 4, 6 and 8 collect the
signals from fibers in y-direction, while superlayers 1, 3, 5 and 7 in x-direction. We
decided to investigate transverse profile in y-direction because the transverse beam
size of the 2002 beam test is smaller in this direction (about 9 mm ie. one pixel),
which is important as we have no other information about incident particle position.
So in y-direction we have more precise information on the particle position in the
beam test data.
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Figure 1: Dimensions on the edge in a reference frame used in this note.

To find a correction on transverse leakage in the ECAL first we have studied
the Monte Carlo samples. We have found energy independent parametrization of
transverse energy leakage. Then the proposed method was partially tested on the
beam-test data.

In this note, if not marked, we are working in a MC-like coordinate system. This
means that © = 0 ¢m and y = 0 ¢m is a point in the middle of the ECAL and the
edge of the Calorimeter is at a point where z = £32.9 ecm or y = £32.9 ¢m, however
the last 5 mm are a non-equipped area (see Figure 1). The other used convention is
that pixel, layer and superlayer numbers starts with 0.



2 Monte Carlo studies

2.1 Samples

Three samples of electrons with energies of 10, 50 and 120 GeV were generated.
The incident angle of those particles is 0 deg and they are generated on the ECAL
upper surface. A sample of 120 GeV electrons with incident angle +23 deg was
also generated to check if our method does not depend on the incident angle. The
standard AMS simulation program based on GEANT3 [1] were used to simulate
detector (database and code version from February 2003).

Electrons were generated not on the whole ECAL surface but only inside an area
defined by: —33 cm <y <0cm and —2 ¢cm < x < 2 cm. This shape of the area
comes from the fact that we want to average effects over the PM scale (so width of
the area is 4 cm) and we need a long arm to perform an efficient fitting (so the area
is very long - half of the ECAL width). The LV1 trigger used in the simulation is
unbiased ECAL trigger.

2.2 Methodology

To correct for transverse leakage we have chosen the method of correction per layer.
The analysis consists of the following steps:

e Find out, with MC, the dependence of the energy deposited in the layer from
the distance of the particle from the edge of the ECAL.

e Fit this dependence and find out the correction function.

The correction per layer has the following features:

e It can be easily translated to the case of particles with non-zero incident angle,
as the correction is done in each layer independently.

e It allows to reconstruct correctly the longitudinal profile of the shower on the
edge of the ECAL.

e It recovers energy resolution, which is affected by transverse leakage.

e It is simple, it uses only information about coordinate of the particles hit in
the ECAL layer and energy deposited in the layer.

We will show here that correction per layer is an efficient and accurate estimator
of the total energy of the particle hitting the edge of the ECAL.



2.3 Energy versus distance

On the Figure 2 the energy deposited in each layer as a function of the particle
position is shown. The plot is prepared for 120 GeV electrons, and only layers
oriented in y-direction are shown. At the edge the deposited energy becomes smaller
due to leakage.

For the layers in x-direction (2, 3, 6, 7, 10, 11, 14 and 15) the similar procedure
is performed. These layers behave differently and it will be discussed later.
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Figure 2: Electrons with 120 GeV of energy. Deposit of energy in every layer in
y-direction as a function of the distance of the particle from the edge of the ECAL
(edge is at -32.9 ¢cm). We see that for deep layers the leakage effect is more severe.



The fitted function has the form:

di,N\ pl
Efgyer " (y) = p0 + W= 2 (1)

where p0, pl and p2 are free parameters of the fit. Meaning of the parameters is
the following:

e p0 estimates the average energy deposited in the layer if there is no transverse
leakage: tracing p0 in layers one obtains the longitudinal profile of the shower.
(In fact, if we assume that the particle hitting the middle of the ECAL gives no
transverse leakage, the energy deposited is p0 + ;’712, but the additional term is
smaller than 1% event in the case of 120 GeV electrons). p0 depends strongly
on energy of the initial particle.

e pl is a quadratic term contribution. It depends strongly on energy.

e p2is a asymptotic line of the fitted function - we can say that it gives informa-
tion about the geometrical active area of the ECAL, ie. if |p2| is larger then
the detector has a larger active area. p2 has weak dependence on energy of the
incident particle.

The function is usually fitted in a range of -33 cm to 0 cm. Starting conditions
of the fit parameters are chosen to optimize the time of fitting and x2. The allowed
parameter range is also set to avoid unreasonable fits. In Table 1 the values of
the parameters p0, pl and p2 for every layer and for every investigated energy are
presented.

The fit parameters are very weakly correlated. The typical fit covariance matrix
(for layer 8, energy 120 GeV) is shown in Table 2. Some correlation between param-
eters pl and p2 can be observed (for all layers and energies), but it is very weak,
what justifies our choice of the fitting function.

In the Figure 3 values of the p2 parameter as a function of the layer number, for
three energies are shown. The absolute values of p2 are higher for low energies which
means that the Calorimeter active area is larger for low energies.

The values of the parameter p2 already give an idea of how much leakage can be
corrected with this method. Surely leakage cannot be corrected for |y| > [p2|. There
is more discussion about range of correction in the next section.

We tried also other parameterizations of energy leakage:

1 1
Elrg;g:’ured(y) — po + , fpz’ Eﬁ;gjured = pO + (:UE)TQ)ZU ete... (2)

But we have chosen Formula (1), because it performs the fits faster and gives
reasonable x2.




Table 1: Fit parameters for layers in y-direction (p0, p1 and p2), position for which
correction factor is equal to 2: Yeorr—2 and value of the correction factor in the mid-
dle of the last pizel corriy—_s1.95¢m)- Only superlayers oriented in y direction are
presented.

layer po ‘ p1 ‘ p2 ‘ Yeorr=2 (Cm) ‘ COTT (y=—31.95¢m)
Electrons 10 GeV
0 0.055 -0.013 -34.307 -33.616 1.044
1 0.158 -0.052 -33.437 -32.626 1.175
4 0.895 -0.341 -33.401 -32.528 1.221
5 1.028 -0.417 -33.428 -32.528 1.228
8 0.966 -0.512 -33.553 -32.524 1.259
9 0.850 -0.523 -33.621 -32.512 1.282
12 0.478 -0.507 -33.920 -32.464 1.375
13 0.388 -0.495 -34.039 -32.443 1.412
16 0.179 -0.417 -34.605 -32.449 1.491
17 0.138 -0.384 -34.886 -32.530 1.473
Electrons 50 GeV
0 0.075 -0.096 -34.707 -33.108 1.201
1 0.287 -0.090 -33.367 -32.575 1.185
4 2.748 -0.782 -33.313 -32.559 1.181
5 3.624 -1.301 -33.383 -32.536 1.211
8 4.932 -1.961 -33.434 -32.542 1.220
9 4.726 -2.206 -33.495 -32.529 1.243
12 3.312 -2.493 -33.717 -32.490 1.317
13 2.810 -2.639 -33.837 -32.467 1.357
16 1.482 -2.197 -34.148 -32.427 1.441
17 1.173 -2.065 -34.281 -32.406 1.477
Electrons 120 GeV
0 0.103 -0.341 -35.284 -32.714 1.420
1 0.397 -0.205 -33.519 -32.503 1.265
4 4.839 -1.866 -33.403 -32.525 1.223
5 6.812 -2.694 -33.414 -32.525 1.226
8 11.189 -3.666 -33.374 -32.565 1.192
9 11.223 -4.181 -33.417 -32.554 1.209
12 8.873 -5.449 -33.625 -32.517 1.280
13 7.753 -6.053 -33.740 -32.491 1.321
16 4.414 -5.499 -34.027 -32.449 1.405
17 3.555 -5.337 -34.160 -32.428 1.442
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Figure 3: Left plot: values of the fit parameter p2, as it changes along the ECAL and
with the incident particle energy. It shows that Calorimeter has a larger geometrical
active area for lower energies of particles. Right plot: values of particle position for
which enerqgy leakage is 50%, for each layer. On both plots the first two layers are
not shown due to large statistical errors on measurements in these layers. On both
plots also the difference between superlayers oriented in x and y directions are clearly
wisible.

2.4 Parametrization of correction coefficient

We would like to perform the transverse leakage correction by the formula:

corrected __ measured measured
Elayer - Elayer * COTTlgyer (y’ Elayer ) (3)

which means that we would like to use multiplicative correction. In this case,
following the Equation 1 and assuming that there is no transverse leakage in the
middle of the ECAL, the correction factor is equal to:

p0 + %12
COT?“zayer (y’ Elmeasured) — p - (4)
ayer (po + (ZUEJT)Q)

The correction coefficients for layers 4, 8, 12 and 16 are shown in Figure 4.
One can see that correction factors depend weakly on energy, even if the parameters
separately are energy-dependent. Correction is slightly higher for low energy particles
(red line: 10 GeV) than for high energy (black line: 120 GeV). Therefore it is
good approximation: corriayer (Y, Efpets™*?) = corrigyer(y). The dependence of the
correction coefficient on the layer number is much stronger than its dependence on
energy of the incident particle. Corrections are more important for deep layers as

the shower develops.



Table 2: Example of the fit covariance matriz for layer 8 for energy 120 GeV. Weak

correlations between parameters is observed.

pO pl p2
p0 | 0.000264 | 0.001309 | -0.000100
pl | 0.001309 | 0.056614 | -0.004634
p2 | -0.000100 | -0.004634 | 0.0003832

The values of the correction coefficients change by about 40% from the external
to the internal (closer to the ECAL center) edge of the last pixel. The average
correction on the last pixel is between 30% and 50%. The correction at the edge
of the pixel number 1 is less then 30%. For the same position the leakage is more
important for deeper layers.
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Figure 4: Correction coefficients as a function of the particle position (y [em]), for
particles hitting the edge of the ECAL. Green arrows mark position of the last pizel
(from -32.4 c¢m to -81.5 cm).

In Figure 5 the correction factors for two layers in direction x are shown. The
values of the correction factors for x-layers are systematically about 30 to 40%



smaller than for layers in y-direction. Probably leakage is partly compensated here
by stronger signal in PMs, which, in this case, are covered by the shower.
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Figure 5: Correction coefficients as a function of the particle position (y [em]), for
particles hitting the edge of the ECAL. Presented for two layers in x-direction.

The multiplicative energy correction is a good first estimator of the energy. It
can be a starting point to more sophisticated, energy-dependent corrections, with
p0=p0(E) and pl=pl(E).

The fact that the correction factors depend very weakly on the energy justifies
use of multiplicative correction coefficients rather then correction by the formula:

pl (Ereal )
Eirer Yy, Blgyer) = p0(Ejgge,) + W=p27 _l;ge; (5)

In the above approach we would be obliged to know the parametrization of p0
and pl as a function of energy (we would need to have an estimator of real energy
in this case, it can be the result of the correction with Formula 3), while the total
correction in the multiplicative approach is almost energy-independent.

2.5 Energy correction

The range of the method we present here can be estimated with the criteria:

COTTiayer(y) < 2,layer = 0...17 (6)

ie. we will not correct events for which the correction coefficient for any layer is
larger than 2. We find that this condition implies that we will not correct energy of
the events hitting outside the last pixel of the ECAL (even if there is active material
there). In the last column of Table 1 the values of the position (Yerr—2) for which
correction factor, corriqyer(y) is equal to 2 are shown. In most cases they are close
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to y=-32.4 cm, just behind the area covered by the last pixel. This is also visualized
on the right plot of Figure 3. Note that for superlayers oriented in x-direction the
correction factors equal 2 appears in places more distanced from the ECAL active
volume than for superlayers oriented in y-direction.

The example of the global effect of the energy correction is shown in Figures 6 (for
10 GeV), 8 (for 50 GeV) and 10 (for 120 GeV). In the first row the distribution of the
deposited and corrected energy is presented for particles which are hitting outside
the ECAL active area. The non-equipped ECAL area but also the electronics and
support structure are enough for electrons to interact and some part of the shower is
contained in ECAL. According to condition 6 these are not recoverable events. The
method we use is no longer justified in this area (because of huge correction factors
but also because of residues of the fitted functions).

The correction is not performed on the signal in layer 0 and 1 due to low energy
deposit in these layers and large energy fluctuations. The fit quality is deteriorated
in these two layers but at the same time they can be neglected in the total deposited
energy budget.

One can note that for higher energies the correction is difficult in the most ex-
ternal part of the last pixel. To see more precisely what happens in the last pixel,
we have divided it into 6 bins of 1.5 mm each. The total energy reconstructed and
corrected for the last two bins is presented in Figure 7 for 10 GeV, Figure 9 for
50 GeV and Figure 11 for energy of 120 GeV. The bins which are more distanced
from the ECAL edge are reconstructed even better, so we not present them here.
We can conclude that up to energy of incident particle of 120 GeV even the energy
of particles hitting the middle of the last pixel can be efficiently corrected.

The effects of the different sets of coeflicients corresponding to the various sets of
MC data implied on 10 GeV and 120 GeV sample are shown in Figure 12. The mean
values of the corrected peaks differ by less than 5% in case of use of different correction
coefficients. This also justifies use of the energy-independent set of coefficients.

In Figure 13 a longitudinal profile of the shower is shown. The black line rep-
resents an uncorrected profile for the electrons hitting the last pixel, the red line
represents the corrected profile and the blue line represents the profile for the par-
ticles which hit the center of the ECAL (no transverse leakage). As expected the
transverse leakage affects more the deeper layers, and the accuracy of determination
of the shower maximum is strongly affected. The corrected longitudinal profile is
in agreement with the profile obtained in the center of the ECAL where transverse
leakage is negligible.

In Figure 14 the energy resolution as a function of the distance from the last
pixel edge is presented. The edge is placed at -32.4 cm (see Figure 1). The last pixel
is divided into 6 equal bins. For every bin the energy resolution before (circles) and
after (squares) correction is plotted. The red line represents the expected energy
resolution for energy of 120 GeV [2]. The method allows to recover the energy
resolution even in the distance 1.5-3 mm from the last pixel edge, and partly recover
energy resolution within the last 1.5 mm.
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2.6 Non-zero incident angle

To check if our method is, as expected, independent of the particle incident angle, the
correction has been performed on the electrons with incident angles £23 deg. Results
are presented in Figure 15. The low energy tail correspond to particles with projected
traces exit by the side of the ECAL (they escape ECAL before hitting the last layer).
This Figure should be compared with Figure 10. Peak is better reconstructed in
Figure 15 than in case of © = 0deg because some fraction of particles are in fact
well-contained in the ECAL (if they move toward the ECAL center).

In conclusion the proposed procedure works very well on the particles hitting
ECAL with non-zero angle.
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Figure 6: Electrons with 10 GeV of energy. Total deposit of energy. Left column does
not contain correction for leakage, right column does. In the first row the electrons
do not hit active area of the ECAL but interact in the material around and give some
signal in this way. In the second row electrons hit the first pizel from the edge, in the
third row the second pizel is hit. The fourth row presents results for the third pizel
hit.
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Figure 7: Electrons with 10 GeV of energy. Correction in the last 2 bins of the last
pizel (divided into 6 bins - see text for details). Size of each bin is 1.5 mm.
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Figure 8: Electrons with 50 GeV of energy. Total deposit of energy.
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Left column does

not contain correction for leakage, right column does. In the first row the electrons
do not hit the active area of the ECAL but interact in the material around and give
some signal in this way. In the second row electrons hit the first pizel from the edge,
in the third row the second pizel is hit. The fourth row presents results for the third

pizel hit.
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Figure 9: Electrons with 50 GeV of energy. Correction in the last 2 bins of the last
pizel (divided into 6 bins - see text for details). Size of each bin is 1.5 mm.
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Figure 10: Electrons with 120 GeV of energy. Total deposit of energy. Left column
does not contain correction for leakage, right column does. In the first row the elec-
trons do not hit the active area of the ECAL but interact in the material around and
give some signal in this way. In the second row electrons hit the first pizel from the
edge, in the third row the second pizel is hit. The fourth row presents results for the
third pixel hit.
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Figure 11: Electrons with 120 GeV of energy. Correction in the last 2 bins of the
last pizel (divided into 6 bins - see text for details). Size of each bin is 1.5 mm.
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Figure 12: Electrons with 10 GeV (left plot) and 120 GeV (right plot) of energy
corrected with correction factors obtained for 10, 50 and 120 GeV. Different sets of
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correction coefficients give similar reconstruction of the deposited energy.
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Figure 13: Longitudinal shower profile for electrons with energy 120 GeV. Black
line: electrons hit the last pizel, red line: electrons hit the last pixel and the energy
correction per layer is done (with exception of the first two layers), blue line: electrons
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Figure 14: Energy resolution as a function of position within the last pizel for en-
ergy 50 GeV and 120 GeV. Circles represent measurements without correction for
transverse leakage, squares represent corrected measurements. Red line corresponds
to energy resolution as measured in beamtest [4].
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Figure 15: Electrons with 120 GeV of energy. Particles were generated with an
incident angle © = 23 deg. The low energy tails are produced by electrons leaving the

ECAL by side.
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3 Testbeam data

During the Summer 2002, the ECAL was tested in the SPS-beam at CERN. The
testbeam setup consisted of trigger scintillators, Cerenkov counters (CEDAR) and
the ECAL. The Cerenkov counter can be used to identify the particles only for low
energies, so for high energies the beam is not too clean. Some of the test runs were
performed at the border of the ECAL to check for the amount of the transverse
leakage.

We have chosen to analyze electron runs with energies 10, 50 and 120 GeV. There
were some runs for each of these energies which were hitting on the edge of the ECAL.
The other runs, with showers contained in the Calorimeter, were also analyzed as a
control sample.

The analyzed set of runs is presented in Table 3.

Table 3: Beam test runs chosen for analysis. Beam position is shown in beamtest
reference frame.

run No || beam y position | beam x position | y-pixel | pedestal run
(cm) (cm)

electrons, 10 GeV
751 89.1 | 247.9 | 1 ] 754

electrons, 50 GeV

1222 80 287 0 1223
1242 89 242 1 1241
1240 154 302 4 1241

electrons, 120 GeV

825 79.9 287 0 829
826 89.1 287 1 829
812 152 305 4 811

As already mentioned, we have not been measuring the position of the particles
during the beam test. The accuracy of the determination of the position is equal to
the granularity of the ECAL, ie. 9 mm. So the correction factor used for beam test
data was calculated for the center of the pixel hit by the beam. This affects results
especially for the last pixel, where the value of the correction factor changes by even
50%, within the last pixel area. For the moment no other estimators of the particle
position were used !.

1For possible estimator based on center of gravity see [6]
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The analysis was performed with use of the latest set of intercalibration coef-
ficients [4]. The ADC — MeV coefficient used is equal to 0.9%. The
transverse leakage correction is the same as found in MC.

In Figure 16 the blue areas correspond to ECAL zones affected by dead or noisy
PMs. The fat lines represent dead PMs while the thin lines represent PMs with
only one dead/noisy channel. There is a dead PM in the interesting zone. It is
the PM which collects the signal in y-direction (giving position in x) and its number
according to the beam test numbering scheme is 6020. Runs touching this PM should
be treated with care. The affected runs have beam in position 256 < = < 274 cm
(see the red coordinates in Figure 16). The PM is in sixth superlayer, where the
shower is already developed, so it can also affect runs with beam not covering the
PM area directly. In practice, only runs with z > 280 ¢m should be taken into
account. Unfortunately we have not found any run which fulfills this condition for
energy 10 GeV.

There is a photomultiplier, number 5010, which gives a signal of low quality. This
PM, not shown in Figure 16, is difficult to calibrate [7, 5], and the quality of its signal
can affect our results.

2010 2030 2050 2070
204
1070 ! | ]
186 —
1060
168 —
1050 %
150 -
1040
132 —]
1030 PM 9030
114 —
1020
% —
1010
L J

78
248 256 274 292 310 328 346 364

2020 2040 2060

Figure 16: Dead channels and PMs during the beam test. Blue bars mark the affected
areas. Red ellipse is the area with the discussed beamtest runs. The red numbers are
coordinates in the same coordinate system as in Table 3.
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The complete list of dead channels from [5]: PM 1070 (one channel), PM 2010
(one channel), PM 6020 (dead PM), PM 9030 (dead PM), PM 9060 (one channel),
and PM 9070 (one channel).

3.1 Electrons, 10 GeV

This is difficult energy because of the lack of data. For this energy the cut on
Cerenkov detector is valid (it does not reject too much data). There is one 10 GeV
run (751) which touches pixel 1 (not pixel 0). But this run hits the corner of the
ECAL so the leakage is on both sides (x and y). In addition this run is in the area
with dead readout channels. There is a dead channel in PM 2010 and just next to
the area covered by run 751 there is dead PM 6020. Due to all these problems we
decided not to show any results for energy of 10 GeV.

3.2 Electrons, 50 GeV

For 50 GeV electrons, the Cerenkov cut can still be useful, however for this energy
already a lot of good events are rejected. Run number 1222 is short (about 5000
events), so we are not using cut on signal from the Cerenkov detector here (see Figure
18 for the cut efficiency). Beam purity without any selection is at the level of 90%.
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Figure 17: Electrons with 50 GeV of energy from the beam test (run 1222), with
and without leakage correction. No cut on Cerenkov detector signal. Correction
coefficient has value corresponding to the middle of the last pizel, ie. y=-31.95 cm.

Among the 50 GeV runs there are runs touching pixel 0, but no runs shooting into
pixel 1 (the run 1242 is in the corner, so the leakage is in x and in y). In Figure 17
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the results of the run 1222 is presented for the correction coefficient corresponding
to the middle of the last pixel (this is accuracy we can have for the beamtest).

The mean value of the uncorrected distribution is equal to 35.5 GeV and ap-
proximately corresponds to MC electrons hitting the 6th bin of the last pixel (see
Figure 9). A tail in the energy distribution is observed, however no explanation for
this tail has been found. It might come from a special configuration of the beam in
this case.

The correction coefficient is not the right one because the corrected peak position
is only 42 GeV. The assumption that beam hits the middle of the pixel is wrong. In
Figure 18 the correction coefficient, following the MC suggestion, has been taken as
if beam were hitting the ECAL 0.75 mm from the last pixel edge (y=-32.325 cm).
Reproduction of the mean value of the total energy is much better in this case:
47.8 GeV. But let us stress again that the beam transverse size is 9 mm. The proper
procedure should associate the separate coefficient to every particle, and the ” global”
coefficient we are using here is a strong approximation.
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Figure 18: FElectrons with 50 GeV of energy from the beam test (run 1222), cor-
rected for the leakage as if beam is hitting ECAL 0.75 mm from the last pixzel border
(y=-32.325 ¢cm). The blue histogram is made with additional cut on signal from
Cerenkov detector and presents how much statistics is lost when using this cut for
this energy.

The energy resolution for 50 GeV, as predicted in [4], should be equal to about
2.8%. The uncorrected distribution for the run 1222 gives resolution of about 5.5%,
while the corrected one is much better and equal to about 4.1%. Thanks to transverse
leakage correction procedure we can recover a part of the energy resolution at the
ECAL edge (especially that the procedure we use is very approximative, we could
do better having more information about particle position).
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3.3 Electrons, 120 GeV

For electron energy of 120 GeV there are few interesting runs. For this energy the
information from Cerenkov counter is very inefficient so we do not use it. The beam
purity, according to measurement performed during the beamtest, is about 50%, but
the impurities a mainly located in the tail of the deposited energy distribution.

In Figure 19 electron run number 825 is shown. Correction procedure moves the
peak of the distribution of the total deposited energy from 78.6 GeV to 91.3 GeV.
Longitudinal leakage for 120 GeV electrons is at the level of 9% [3], ie. the peak,
corrected for the transverse leakage should be placed around 110 GeV, as on the
left plots of Figure 10. Therefore the correction on the transverse leakage is not
sufficient. This is due to the fact that we use the value for the center of the last pixel
(y=-31.95 cm), while the run 825 hit ECAL closer to the edge. The uncorrected
value of 81.8 GeV correspond to MC electrons hitting within the first 1.5 mm of the
last pixel (see Figure 11).
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Figure 19: Electrons with 120 GeV of energy from the beam test (run 825), with and
without leakage correction. Correction coefficient as if electrons hitting the middle of
the last pizel. Cerenkov information not included during selection.

To prove this conclusion we used the correction factor for the position of 0.75 mm
from the last pixel edge (y=-32.325 cm). The results are presented in Figure 20. For
such correction factor, the corrected distribution reproduces the expected mean value
of the deposited energy much better.

The expected energy resolution for energy of 120 GeV is equal to about 2.3% [4].
The uncorrected energy distribution for the run 825 has energy resolution of about
5% while the corrected one has about 4.8%. So in this case only small part of energy
resolution is recovered.
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Figure 20: Electrons with 120 GeV of energy from the beam test (run 825), with
and without leakage correction. Correction coefficient used correspond to distance
of the particles from the ECAL edge equal to 0.75 mm (y=-32.825 ¢m). Cerenkov
information not included during selection.

4

Summary and Conclusions

The analysis presented in this note allows us to draw a few interesting conclusions:

Firstly, quite precise corrections on transverse leakage in the ECAL are energy
independent and can be applied as multiplicative factors different for each layer
of the Calorimeter.

The method can be used for particles with a non-zero incident angle.

In this approach the correction can be used even in the area close to the last
pixel edge up to energy of incident particle equal to 120 GeV. The method does
not work for particles hitting the non-equipped zone of the ECAL.

This method allows us to correct reconstruction of the longitudinal shape of

the cascade, which is important, for instance, for the proton rejection power of
the ECAL.

This method allows for partial recovery of the energy resolution even within
the last pixel.

The method improves the energy resolution for MC. This effect is smaller in
data.

The geometrical active area (no cuts on particle reconstruction) of the ECAL
(equipped zone) is 4200 cm?. Without any leakage correction the last pixel would be
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lost for electrons of 120 GeV (0 deg incident angle), which would give the geometrical
active are of about 3970 cm? (without taking into account the fact that at the corners
the leakage is from two sides) which is 94% of the initial value. With correction for
transverse leakage about 80% of the last pixel surface can be recovered, what gives
the geometrical active area of about 4160 ¢rn? which is about 99% of the initial value.

In future, a more sophisticated procedure using the first estimation of energy
presented here (ie. energy-dependent correction) and other available information
(like correlations between layers) may lead to even better results.

A remaining open question is the estimation of the particle impact point in the
ECAL. In the real conditions, in the case of electrons, the estimation of the entry
point can be made from track measured in the tracker. A study of the influence of
the magnetic field on the shape of the electromagnetic cascade in the ECAL should
be made, but we can foresee that the effect may be not large because lead is a
diamagnetic material.

The impact position in case of photons (in single photon mode) is based only on
the ECAL information and further study concerning the position resolution on the
edge of the ECAL is necessary.

No real conclusion from MC/data comparison can be drawn. The particle position
is known with a precision of one pixel in the testbeam, and within the last pixel the
correction coefficients change by even 50% between the external and internal edge.
From the comparison made here, we can only conclude that testbeam data are not in
contradiction with MC results. When applying the MC coeflicients on the beamtest
data, the measured energy estimation improves.
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